Réitigh do a,b.
a=3+\sqrt{6}i\approx 3+2.449489743i\text{, }b=-\sqrt{6}i+3\approx 3-2.449489743i
a=-\sqrt{6}i+3\approx 3-2.449489743i\text{, }b=3+\sqrt{6}i\approx 3+2.449489743i
Tráth na gCeist
Complex Number
5 fadhbanna cosúil le:
\left. \begin{array} { l } { a + b = 6 } \\ { a ^ { 2 } + b ^ { 2 } = 6 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=6
Réitigh a+b=6 do a trí a ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
a=-b+6
Bain b ón dá thaobh den chothromóid.
b^{2}+\left(-b+6\right)^{2}=6
Cuir a in aonad -b+6 sa chothromóid eile, b^{2}+a^{2}=6.
b^{2}+b^{2}-12b+36=6
Cearnóg -b+6.
2b^{2}-12b+36=6
Suimigh b^{2} le b^{2}?
2b^{2}-12b+30=0
Bain 6 ón dá thaobh den chothromóid.
b=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 30}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1+1\left(-1\right)^{2} in ionad a, 1\times 6\left(-1\right)\times 2 in ionad b, agus 30 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 30}}{2\times 2}
Cearnóg 1\times 6\left(-1\right)\times 2.
b=\frac{-\left(-12\right)±\sqrt{144-8\times 30}}{2\times 2}
Méadaigh -4 faoi 1+1\left(-1\right)^{2}.
b=\frac{-\left(-12\right)±\sqrt{144-240}}{2\times 2}
Méadaigh -8 faoi 30.
b=\frac{-\left(-12\right)±\sqrt{-96}}{2\times 2}
Suimigh 144 le -240?
b=\frac{-\left(-12\right)±4\sqrt{6}i}{2\times 2}
Tóg fréamh chearnach -96.
b=\frac{12±4\sqrt{6}i}{2\times 2}
Tá 12 urchomhairleach le 1\times 6\left(-1\right)\times 2.
b=\frac{12±4\sqrt{6}i}{4}
Méadaigh 2 faoi 1+1\left(-1\right)^{2}.
b=\frac{12+4\sqrt{6}i}{4}
Réitigh an chothromóid b=\frac{12±4\sqrt{6}i}{4} nuair is ionann ± agus plus. Suimigh 12 le 4i\sqrt{6}?
b=3+\sqrt{6}i
Roinn 12+4i\sqrt{6} faoi 4.
b=\frac{-4\sqrt{6}i+12}{4}
Réitigh an chothromóid b=\frac{12±4\sqrt{6}i}{4} nuair is ionann ± agus míneas. Dealaigh 4i\sqrt{6} ó 12.
b=-\sqrt{6}i+3
Roinn 12-4i\sqrt{6} faoi 4.
a=-\left(3+\sqrt{6}i\right)+6
Tá dhá réiteach ann do b: 3+i\sqrt{6} agus 3-i\sqrt{6}. Cuir b in aonad 3+i\sqrt{6} sa chothromóid eile a=-b+6 chun an réiteach comhfhreagrach do a a shásaíonn an dá chothromóid a fháil.
a=-\left(-\sqrt{6}i+3\right)+6
Ansin cuir b in aonad 3-i\sqrt{6} sa chothromóid eile a=-b+6 agus faigh réiteach chun an réiteach comhfhreagrach do a a shásaíonn an dá chothromóid a fháil.
a=-\left(3+\sqrt{6}i\right)+6,b=3+\sqrt{6}i\text{ or }a=-\left(-\sqrt{6}i+3\right)+6,b=-\sqrt{6}i+3
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}