Réitigh do a,b.
a=1
b=2
Tráth na gCeist
Simultaneous Equation
\left. \begin{array} { l } { a + 2 b = 5 } \\ { a - 2 b = - 3 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+2b=5,a-2b=-3
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
a+2b=5
Roghnaigh ceann de na cothromóidí agus réitigh é do a trí a ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
a=-2b+5
Bain 2b ón dá thaobh den chothromóid.
-2b+5-2b=-3
Cuir a in aonad -2b+5 sa chothromóid eile, a-2b=-3.
-4b+5=-3
Suimigh -2b le -2b?
-4b=-8
Bain 5 ón dá thaobh den chothromóid.
b=2
Roinn an dá thaobh faoi -4.
a=-2\times 2+5
Cuir b in aonad 2 in a=-2b+5. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do a.
a=-4+5
Méadaigh -2 faoi 2.
a=1
Suimigh 5 le -4?
a=1,b=2
Tá an córas réitithe anois.
a+2b=5,a-2b=-3
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}1&2\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&2\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\1&-2\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2}&-\frac{2}{-2-2}\\-\frac{1}{-2-2}&\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5+\frac{1}{2}\left(-3\right)\\\frac{1}{4}\times 5-\frac{1}{4}\left(-3\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Déan an uimhríocht.
a=1,b=2
Asbhain na heilimintí maitríse a agus b.
a+2b=5,a-2b=-3
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
a-a+2b+2b=5+3
Dealaigh a-2b=-3 ó a+2b=5 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2b+2b=5+3
Suimigh a le -a? Cuirtear na téarmaí a agus -a ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
4b=5+3
Suimigh 2b le 2b?
4b=8
Suimigh 5 le 3?
b=2
Roinn an dá thaobh faoi 4.
a-2\times 2=-3
Cuir b in aonad 2 in a-2b=-3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do a.
a-4=-3
Méadaigh -2 faoi 2.
a=1
Cuir 4 leis an dá thaobh den chothromóid.
a=1,b=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}