Réitigh do x,y.
x=2
y=4
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
5x-y=6,3x-4y=-10
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
5x-y=6
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
5x=y+6
Cuir y leis an dá thaobh den chothromóid.
x=\frac{1}{5}\left(y+6\right)
Roinn an dá thaobh faoi 5.
x=\frac{1}{5}y+\frac{6}{5}
Méadaigh \frac{1}{5} faoi y+6.
3\left(\frac{1}{5}y+\frac{6}{5}\right)-4y=-10
Cuir x in aonad \frac{6+y}{5} sa chothromóid eile, 3x-4y=-10.
\frac{3}{5}y+\frac{18}{5}-4y=-10
Méadaigh 3 faoi \frac{6+y}{5}.
-\frac{17}{5}y+\frac{18}{5}=-10
Suimigh \frac{3y}{5} le -4y?
-\frac{17}{5}y=-\frac{68}{5}
Bain \frac{18}{5} ón dá thaobh den chothromóid.
y=4
Roinn an dá thaobh den chothromóid faoi -\frac{17}{5}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{1}{5}\times 4+\frac{6}{5}
Cuir y in aonad 4 in x=\frac{1}{5}y+\frac{6}{5}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{4+6}{5}
Méadaigh \frac{1}{5} faoi 4.
x=2
Suimigh \frac{6}{5} le \frac{4}{5} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=2,y=4
Tá an córas réitithe anois.
5x-y=6,3x-4y=-10
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-10\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}5&-1\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\3&-4\end{matrix}\right))\left(\begin{matrix}6\\-10\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5\left(-4\right)-\left(-3\right)}&-\frac{-1}{5\left(-4\right)-\left(-3\right)}\\-\frac{3}{5\left(-4\right)-\left(-3\right)}&\frac{5}{5\left(-4\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&-\frac{1}{17}\\\frac{3}{17}&-\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}6\\-10\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 6-\frac{1}{17}\left(-10\right)\\\frac{3}{17}\times 6-\frac{5}{17}\left(-10\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Déan an uimhríocht.
x=2,y=4
Asbhain na heilimintí maitríse x agus y.
5x-y=6,3x-4y=-10
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 5x+3\left(-1\right)y=3\times 6,5\times 3x+5\left(-4\right)y=5\left(-10\right)
Chun 5x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 5.
15x-3y=18,15x-20y=-50
Simpligh.
15x-15x-3y+20y=18+50
Dealaigh 15x-20y=-50 ó 15x-3y=18 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-3y+20y=18+50
Suimigh 15x le -15x? Cuirtear na téarmaí 15x agus -15x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
17y=18+50
Suimigh -3y le 20y?
17y=68
Suimigh 18 le 50?
y=4
Roinn an dá thaobh faoi 17.
3x-4\times 4=-10
Cuir y in aonad 4 in 3x-4y=-10. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x-16=-10
Méadaigh -4 faoi 4.
3x=6
Cuir 16 leis an dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi 3.
x=2,y=4
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}