Réitigh do x,y.
x=1
y=3
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { 4 x + y = 7 } \\ { 3 x + 2 y = 9 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
4x+y=7,3x+2y=9
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
4x+y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
4x=-y+7
Bain y ón dá thaobh den chothromóid.
x=\frac{1}{4}\left(-y+7\right)
Roinn an dá thaobh faoi 4.
x=-\frac{1}{4}y+\frac{7}{4}
Méadaigh \frac{1}{4} faoi -y+7.
3\left(-\frac{1}{4}y+\frac{7}{4}\right)+2y=9
Cuir x in aonad \frac{-y+7}{4} sa chothromóid eile, 3x+2y=9.
-\frac{3}{4}y+\frac{21}{4}+2y=9
Méadaigh 3 faoi \frac{-y+7}{4}.
\frac{5}{4}y+\frac{21}{4}=9
Suimigh -\frac{3y}{4} le 2y?
\frac{5}{4}y=\frac{15}{4}
Bain \frac{21}{4} ón dá thaobh den chothromóid.
y=3
Roinn an dá thaobh den chothromóid faoi \frac{5}{4}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{1}{4}\times 3+\frac{7}{4}
Cuir y in aonad 3 in x=-\frac{1}{4}y+\frac{7}{4}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-3+7}{4}
Méadaigh -\frac{1}{4} faoi 3.
x=1
Suimigh \frac{7}{4} le -\frac{3}{4} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=3
Tá an córas réitithe anois.
4x+y=7,3x+2y=9
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}4&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-3}&-\frac{1}{4\times 2-3}\\-\frac{3}{4\times 2-3}&\frac{4}{4\times 2-3}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 7-\frac{1}{5}\times 9\\-\frac{3}{5}\times 7+\frac{4}{5}\times 9\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Déan an uimhríocht.
x=1,y=3
Asbhain na heilimintí maitríse x agus y.
4x+y=7,3x+2y=9
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 4x+3y=3\times 7,4\times 3x+4\times 2y=4\times 9
Chun 4x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 4.
12x+3y=21,12x+8y=36
Simpligh.
12x-12x+3y-8y=21-36
Dealaigh 12x+8y=36 ó 12x+3y=21 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3y-8y=21-36
Suimigh 12x le -12x? Cuirtear na téarmaí 12x agus -12x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-5y=21-36
Suimigh 3y le -8y?
-5y=-15
Suimigh 21 le -36?
y=3
Roinn an dá thaobh faoi -5.
3x+2\times 3=9
Cuir y in aonad 3 in 3x+2y=9. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x+6=9
Méadaigh 2 faoi 3.
3x=3
Bain 6 ón dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 3.
x=1,y=3
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}