Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x+6y=1,x+y=0
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+6y=1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-6y+1
Bain 6y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-6y+1\right)
Roinn an dá thaobh faoi 3.
x=-2y+\frac{1}{3}
Méadaigh \frac{1}{3} faoi -6y+1.
-2y+\frac{1}{3}+y=0
Cuir x in aonad -2y+\frac{1}{3} sa chothromóid eile, x+y=0.
-y+\frac{1}{3}=0
Suimigh -2y le y?
-y=-\frac{1}{3}
Bain \frac{1}{3} ón dá thaobh den chothromóid.
y=\frac{1}{3}
Roinn an dá thaobh faoi -1.
x=-2\times \frac{1}{3}+\frac{1}{3}
Cuir y in aonad \frac{1}{3} in x=-2y+\frac{1}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-2+1}{3}
Méadaigh -2 faoi \frac{1}{3}.
x=-\frac{1}{3}
Suimigh \frac{1}{3} le -\frac{2}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-\frac{1}{3},y=\frac{1}{3}
Tá an córas réitithe anois.
3x+6y=1,x+y=0
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}3&6\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&6\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&6\\1&1\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-6}&-\frac{6}{3-6}\\-\frac{1}{3-6}&\frac{3}{3-6}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&2\\\frac{1}{3}&-1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\\frac{1}{3}\end{matrix}\right)
Méadaigh na maitrísí.
x=-\frac{1}{3},y=\frac{1}{3}
Asbhain na heilimintí maitríse x agus y.
3x+6y=1,x+y=0
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x+6y=1,3x+3y=0
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x-3x+6y-3y=1
Dealaigh 3x+3y=0 ó 3x+6y=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
6y-3y=1
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
3y=1
Suimigh 6y le -3y?
y=\frac{1}{3}
Roinn an dá thaobh faoi 3.
x+\frac{1}{3}=0
Cuir y in aonad \frac{1}{3} in x+y=0. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{1}{3}
Bain \frac{1}{3} ón dá thaobh den chothromóid.
x=-\frac{1}{3},y=\frac{1}{3}
Tá an córas réitithe anois.