Réitigh do x,y.
x=0
y=2
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { 3 x + 2 y = 4 } \\ { 2 x + 3 y = 6 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
3x+2y=4,2x+3y=6
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+2y=4
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-2y+4
Bain 2y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-2y+4\right)
Roinn an dá thaobh faoi 3.
x=-\frac{2}{3}y+\frac{4}{3}
Méadaigh \frac{1}{3} faoi -2y+4.
2\left(-\frac{2}{3}y+\frac{4}{3}\right)+3y=6
Cuir x in aonad \frac{-2y+4}{3} sa chothromóid eile, 2x+3y=6.
-\frac{4}{3}y+\frac{8}{3}+3y=6
Méadaigh 2 faoi \frac{-2y+4}{3}.
\frac{5}{3}y+\frac{8}{3}=6
Suimigh -\frac{4y}{3} le 3y?
\frac{5}{3}y=\frac{10}{3}
Bain \frac{8}{3} ón dá thaobh den chothromóid.
y=2
Roinn an dá thaobh den chothromóid faoi \frac{5}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{2}{3}\times 2+\frac{4}{3}
Cuir y in aonad 2 in x=-\frac{2}{3}y+\frac{4}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-4+4}{3}
Méadaigh -\frac{2}{3} faoi 2.
x=0
Suimigh \frac{4}{3} le -\frac{4}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=0,y=2
Tá an córas réitithe anois.
3x+2y=4,2x+3y=6
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}3&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2\times 2}&-\frac{2}{3\times 3-2\times 2}\\-\frac{2}{3\times 3-2\times 2}&\frac{3}{3\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{2}{5}\\-\frac{2}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4-\frac{2}{5}\times 6\\-\frac{2}{5}\times 4+\frac{3}{5}\times 6\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Déan an uimhríocht.
x=0,y=2
Asbhain na heilimintí maitríse x agus y.
3x+2y=4,2x+3y=6
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2\times 3x+2\times 2y=2\times 4,3\times 2x+3\times 3y=3\times 6
Chun 3x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
6x+4y=8,6x+9y=18
Simpligh.
6x-6x+4y-9y=8-18
Dealaigh 6x+9y=18 ó 6x+4y=8 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
4y-9y=8-18
Suimigh 6x le -6x? Cuirtear na téarmaí 6x agus -6x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-5y=8-18
Suimigh 4y le -9y?
-5y=-10
Suimigh 8 le -18?
y=2
Roinn an dá thaobh faoi -5.
2x+3\times 2=6
Cuir y in aonad 2 in 2x+3y=6. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x+6=6
Méadaigh 3 faoi 2.
2x=0
Bain 6 ón dá thaobh den chothromóid.
x=0
Roinn an dá thaobh faoi 2.
x=0,y=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}