Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x+2y=0,x+y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+2y=0
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-2y
Bain 2y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-2\right)y
Roinn an dá thaobh faoi 3.
x=-\frac{2}{3}y
Méadaigh \frac{1}{3} faoi -2y.
-\frac{2}{3}y+y=1
Cuir x in aonad -\frac{2y}{3} sa chothromóid eile, x+y=1.
\frac{1}{3}y=1
Suimigh -\frac{2y}{3} le y?
y=3
Iolraigh an dá thaobh faoi 3.
x=-\frac{2}{3}\times 3
Cuir y in aonad 3 in x=-\frac{2}{3}y. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-2
Méadaigh -\frac{2}{3} faoi 3.
x=-2,y=3
Tá an córas réitithe anois.
3x+2y=0,x+y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
Méadaigh na maitrísí.
x=-2,y=3
Asbhain na heilimintí maitríse x agus y.
3x+2y=0,x+y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x+2y=0,3x+3y=3
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x-3x+2y-3y=-3
Dealaigh 3x+3y=3 ó 3x+2y=0 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2y-3y=-3
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-y=-3
Suimigh 2y le -3y?
y=3
Roinn an dá thaobh faoi -1.
x+3=1
Cuir y in aonad 3 in x+y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-2
Bain 3 ón dá thaobh den chothromóid.
x=-2,y=3
Tá an córas réitithe anois.