Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x+2y=-10,2x-10y=-1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+2y=-10
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-2y-10
Bain 2y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-2y-10\right)
Roinn an dá thaobh faoi 3.
x=-\frac{2}{3}y-\frac{10}{3}
Méadaigh \frac{1}{3} faoi -2y-10.
2\left(-\frac{2}{3}y-\frac{10}{3}\right)-10y=-1
Cuir x in aonad \frac{-2y-10}{3} sa chothromóid eile, 2x-10y=-1.
-\frac{4}{3}y-\frac{20}{3}-10y=-1
Méadaigh 2 faoi \frac{-2y-10}{3}.
-\frac{34}{3}y-\frac{20}{3}=-1
Suimigh -\frac{4y}{3} le -10y?
-\frac{34}{3}y=\frac{17}{3}
Cuir \frac{20}{3} leis an dá thaobh den chothromóid.
y=-\frac{1}{2}
Roinn an dá thaobh den chothromóid faoi -\frac{34}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{2}{3}\left(-\frac{1}{2}\right)-\frac{10}{3}
Cuir y in aonad -\frac{1}{2} in x=-\frac{2}{3}y-\frac{10}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{1-10}{3}
Méadaigh -\frac{2}{3} faoi -\frac{1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-3
Suimigh -\frac{10}{3} le \frac{1}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-3,y=-\frac{1}{2}
Tá an córas réitithe anois.
3x+2y=-10,2x-10y=-1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}3&2\\2&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&2\\2&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\2&-10\end{matrix}\right))\left(\begin{matrix}-10\\-1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{3\left(-10\right)-2\times 2}&-\frac{2}{3\left(-10\right)-2\times 2}\\-\frac{2}{3\left(-10\right)-2\times 2}&\frac{3}{3\left(-10\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&\frac{1}{17}\\\frac{1}{17}&-\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}-10\\-1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\left(-10\right)+\frac{1}{17}\left(-1\right)\\\frac{1}{17}\left(-10\right)-\frac{3}{34}\left(-1\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-\frac{1}{2}\end{matrix}\right)
Déan an uimhríocht.
x=-3,y=-\frac{1}{2}
Asbhain na heilimintí maitríse x agus y.
3x+2y=-10,2x-10y=-1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2\times 3x+2\times 2y=2\left(-10\right),3\times 2x+3\left(-10\right)y=3\left(-1\right)
Chun 3x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
6x+4y=-20,6x-30y=-3
Simpligh.
6x-6x+4y+30y=-20+3
Dealaigh 6x-30y=-3 ó 6x+4y=-20 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
4y+30y=-20+3
Suimigh 6x le -6x? Cuirtear na téarmaí 6x agus -6x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
34y=-20+3
Suimigh 4y le 30y?
34y=-17
Suimigh -20 le 3?
y=-\frac{1}{2}
Roinn an dá thaobh faoi 34.
2x-10\left(-\frac{1}{2}\right)=-1
Cuir y in aonad -\frac{1}{2} in 2x-10y=-1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x+5=-1
Méadaigh -10 faoi -\frac{1}{2}.
2x=-6
Bain 5 ón dá thaobh den chothromóid.
x=-3
Roinn an dá thaobh faoi 2.
x=-3,y=-\frac{1}{2}
Tá an córas réitithe anois.