Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x+y=6,6x-y=2
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+y=6
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-y+6
Bain y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-y+6\right)
Roinn an dá thaobh faoi 2.
x=-\frac{1}{2}y+3
Méadaigh \frac{1}{2} faoi -y+6.
6\left(-\frac{1}{2}y+3\right)-y=2
Cuir x in aonad -\frac{y}{2}+3 sa chothromóid eile, 6x-y=2.
-3y+18-y=2
Méadaigh 6 faoi -\frac{y}{2}+3.
-4y+18=2
Suimigh -3y le -y?
-4y=-16
Bain 18 ón dá thaobh den chothromóid.
y=4
Roinn an dá thaobh faoi -4.
x=-\frac{1}{2}\times 4+3
Cuir y in aonad 4 in x=-\frac{1}{2}y+3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-2+3
Méadaigh -\frac{1}{2} faoi 4.
x=1
Suimigh 3 le -2?
x=1,y=4
Tá an córas réitithe anois.
2x+y=6,6x-y=2
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}2&1\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&1\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-6}&-\frac{1}{2\left(-1\right)-6}\\-\frac{6}{2\left(-1\right)-6}&\frac{2}{2\left(-1\right)-6}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{8}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}\times 6+\frac{1}{8}\times 2\\\frac{3}{4}\times 6-\frac{1}{4}\times 2\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Déan an uimhríocht.
x=1,y=4
Asbhain na heilimintí maitríse x agus y.
2x+y=6,6x-y=2
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
6\times 2x+6y=6\times 6,2\times 6x+2\left(-1\right)y=2\times 2
Chun 2x agus 6x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 6 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
12x+6y=36,12x-2y=4
Simpligh.
12x-12x+6y+2y=36-4
Dealaigh 12x-2y=4 ó 12x+6y=36 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
6y+2y=36-4
Suimigh 12x le -12x? Cuirtear na téarmaí 12x agus -12x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
8y=36-4
Suimigh 6y le 2y?
8y=32
Suimigh 36 le -4?
y=4
Roinn an dá thaobh faoi 8.
6x-4=2
Cuir y in aonad 4 in 6x-y=2. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
6x=6
Cuir 4 leis an dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 6.
x=1,y=4
Tá an córas réitithe anois.