Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x+y=3,3x+4y=7
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-y+3
Bain y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-y+3\right)
Roinn an dá thaobh faoi 2.
x=-\frac{1}{2}y+\frac{3}{2}
Méadaigh \frac{1}{2} faoi -y+3.
3\left(-\frac{1}{2}y+\frac{3}{2}\right)+4y=7
Cuir x in aonad \frac{-y+3}{2} sa chothromóid eile, 3x+4y=7.
-\frac{3}{2}y+\frac{9}{2}+4y=7
Méadaigh 3 faoi \frac{-y+3}{2}.
\frac{5}{2}y+\frac{9}{2}=7
Suimigh -\frac{3y}{2} le 4y?
\frac{5}{2}y=\frac{5}{2}
Bain \frac{9}{2} ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh den chothromóid faoi \frac{5}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{-1+3}{2}
Cuir y in aonad 1 in x=-\frac{1}{2}y+\frac{3}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=1
Suimigh \frac{3}{2} le -\frac{1}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=1
Tá an córas réitithe anois.
2x+y=3,3x+4y=7
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\7\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}2&1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&1\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&4\end{matrix}\right))\left(\begin{matrix}3\\7\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{1}{2\times 4-3}\\-\frac{3}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}3\\7\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\times 3-\frac{1}{5}\times 7\\-\frac{3}{5}\times 3+\frac{2}{5}\times 7\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Déan an uimhríocht.
x=1,y=1
Asbhain na heilimintí maitríse x agus y.
2x+y=3,3x+4y=7
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 2x+3y=3\times 3,2\times 3x+2\times 4y=2\times 7
Chun 2x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
6x+3y=9,6x+8y=14
Simpligh.
6x-6x+3y-8y=9-14
Dealaigh 6x+8y=14 ó 6x+3y=9 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3y-8y=9-14
Suimigh 6x le -6x? Cuirtear na téarmaí 6x agus -6x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-5y=9-14
Suimigh 3y le -8y?
-5y=-5
Suimigh 9 le -14?
y=1
Roinn an dá thaobh faoi -5.
3x+4=7
Cuir y in aonad 1 in 3x+4y=7. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x=3
Bain 4 ón dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 3.
x=1,y=1
Tá an córas réitithe anois.