Réitigh do x,y.
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
y = \frac{12}{5} = 2\frac{2}{5} = 2.4
Graf
Tráth na gCeist
Simultaneous Equation
\left. \begin{array} { l } { 2 x + 4 y = 12 } \\ { 3 x + y = 6 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
2x+4y=12,3x+y=6
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+4y=12
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-4y+12
Bain 4y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-4y+12\right)
Roinn an dá thaobh faoi 2.
x=-2y+6
Méadaigh \frac{1}{2} faoi -4y+12.
3\left(-2y+6\right)+y=6
Cuir x in aonad -2y+6 sa chothromóid eile, 3x+y=6.
-6y+18+y=6
Méadaigh 3 faoi -2y+6.
-5y+18=6
Suimigh -6y le y?
-5y=-12
Bain 18 ón dá thaobh den chothromóid.
y=\frac{12}{5}
Roinn an dá thaobh faoi -5.
x=-2\times \frac{12}{5}+6
Cuir y in aonad \frac{12}{5} in x=-2y+6. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{24}{5}+6
Méadaigh -2 faoi \frac{12}{5}.
x=\frac{6}{5}
Suimigh 6 le -\frac{24}{5}?
x=\frac{6}{5},y=\frac{12}{5}
Tá an córas réitithe anois.
2x+4y=12,3x+y=6
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\6\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}2&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&4\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&1\end{matrix}\right))\left(\begin{matrix}12\\6\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 3}&-\frac{4}{2-4\times 3}\\-\frac{3}{2-4\times 3}&\frac{2}{2-4\times 3}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{2}{5}\\\frac{3}{10}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}12\\6\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 12+\frac{2}{5}\times 6\\\frac{3}{10}\times 12-\frac{1}{5}\times 6\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{12}{5}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{6}{5},y=\frac{12}{5}
Asbhain na heilimintí maitríse x agus y.
2x+4y=12,3x+y=6
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 2x+3\times 4y=3\times 12,2\times 3x+2y=2\times 6
Chun 2x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
6x+12y=36,6x+2y=12
Simpligh.
6x-6x+12y-2y=36-12
Dealaigh 6x+2y=12 ó 6x+12y=36 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
12y-2y=36-12
Suimigh 6x le -6x? Cuirtear na téarmaí 6x agus -6x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
10y=36-12
Suimigh 12y le -2y?
10y=24
Suimigh 36 le -12?
y=\frac{12}{5}
Roinn an dá thaobh faoi 10.
3x+\frac{12}{5}=6
Cuir y in aonad \frac{12}{5} in 3x+y=6. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x=\frac{18}{5}
Bain \frac{12}{5} ón dá thaobh den chothromóid.
x=\frac{6}{5}
Roinn an dá thaobh faoi 3.
x=\frac{6}{5},y=\frac{12}{5}
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}