Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x+3y=7,5x+2y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x+3y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=-3y+7
Bain 3y ón dá thaobh den chothromóid.
x=\frac{1}{2}\left(-3y+7\right)
Roinn an dá thaobh faoi 2.
x=-\frac{3}{2}y+\frac{7}{2}
Méadaigh \frac{1}{2} faoi -3y+7.
5\left(-\frac{3}{2}y+\frac{7}{2}\right)+2y=1
Cuir x in aonad \frac{-3y+7}{2} sa chothromóid eile, 5x+2y=1.
-\frac{15}{2}y+\frac{35}{2}+2y=1
Méadaigh 5 faoi \frac{-3y+7}{2}.
-\frac{11}{2}y+\frac{35}{2}=1
Suimigh -\frac{15y}{2} le 2y?
-\frac{11}{2}y=-\frac{33}{2}
Bain \frac{35}{2} ón dá thaobh den chothromóid.
y=3
Roinn an dá thaobh den chothromóid faoi -\frac{11}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{3}{2}\times 3+\frac{7}{2}
Cuir y in aonad 3 in x=-\frac{3}{2}y+\frac{7}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-9+7}{2}
Méadaigh -\frac{3}{2} faoi 3.
x=-1
Suimigh \frac{7}{2} le -\frac{9}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-1,y=3
Tá an córas réitithe anois.
2x+3y=7,5x+2y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&3\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 5}&-\frac{3}{2\times 2-3\times 5}\\-\frac{5}{2\times 2-3\times 5}&\frac{2}{2\times 2-3\times 5}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{3}{11}\\\frac{5}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\times 7+\frac{3}{11}\\\frac{5}{11}\times 7-\frac{2}{11}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Déan an uimhríocht.
x=-1,y=3
Asbhain na heilimintí maitríse x agus y.
2x+3y=7,5x+2y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
5\times 2x+5\times 3y=5\times 7,2\times 5x+2\times 2y=2
Chun 2x agus 5x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 5 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
10x+15y=35,10x+4y=2
Simpligh.
10x-10x+15y-4y=35-2
Dealaigh 10x+4y=2 ó 10x+15y=35 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
15y-4y=35-2
Suimigh 10x le -10x? Cuirtear na téarmaí 10x agus -10x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
11y=35-2
Suimigh 15y le -4y?
11y=33
Suimigh 35 le -2?
y=3
Roinn an dá thaobh faoi 11.
5x+2\times 3=1
Cuir y in aonad 3 in 5x+2y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
5x+6=1
Méadaigh 2 faoi 3.
5x=-5
Bain 6 ón dá thaobh den chothromóid.
x=-1
Roinn an dá thaobh faoi 5.
x=-1,y=3
Tá an córas réitithe anois.