Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

-6x+y=-2,-3x-6y=12
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
-6x+y=-2
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
-6x=-y-2
Bain y ón dá thaobh den chothromóid.
x=-\frac{1}{6}\left(-y-2\right)
Roinn an dá thaobh faoi -6.
x=\frac{1}{6}y+\frac{1}{3}
Méadaigh -\frac{1}{6} faoi -y-2.
-3\left(\frac{1}{6}y+\frac{1}{3}\right)-6y=12
Cuir x in aonad \frac{y}{6}+\frac{1}{3} sa chothromóid eile, -3x-6y=12.
-\frac{1}{2}y-1-6y=12
Méadaigh -3 faoi \frac{y}{6}+\frac{1}{3}.
-\frac{13}{2}y-1=12
Suimigh -\frac{y}{2} le -6y?
-\frac{13}{2}y=13
Cuir 1 leis an dá thaobh den chothromóid.
y=-2
Roinn an dá thaobh den chothromóid faoi -\frac{13}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{1}{6}\left(-2\right)+\frac{1}{3}
Cuir y in aonad -2 in x=\frac{1}{6}y+\frac{1}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-1+1}{3}
Méadaigh \frac{1}{6} faoi -2.
x=0
Suimigh \frac{1}{3} le -\frac{1}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=0,y=-2
Tá an córas réitithe anois.
-6x+y=-2,-3x-6y=12
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\12\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6\left(-6\right)-\left(-3\right)}&-\frac{1}{-6\left(-6\right)-\left(-3\right)}\\-\frac{-3}{-6\left(-6\right)-\left(-3\right)}&-\frac{6}{-6\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{39}\\\frac{1}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-2\right)-\frac{1}{39}\times 12\\\frac{1}{13}\left(-2\right)-\frac{2}{13}\times 12\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Déan an uimhríocht.
x=0,y=-2
Asbhain na heilimintí maitríse x agus y.
-6x+y=-2,-3x-6y=12
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
-3\left(-6\right)x-3y=-3\left(-2\right),-6\left(-3\right)x-6\left(-6\right)y=-6\times 12
Chun -6x agus -3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi -3 agus gach téarma ar gach taobh den dara cothromóid faoi -6.
18x-3y=6,18x+36y=-72
Simpligh.
18x-18x-3y-36y=6+72
Dealaigh 18x+36y=-72 ó 18x-3y=6 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-3y-36y=6+72
Suimigh 18x le -18x? Cuirtear na téarmaí 18x agus -18x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-39y=6+72
Suimigh -3y le -36y?
-39y=78
Suimigh 6 le 72?
y=-2
Roinn an dá thaobh faoi -39.
-3x-6\left(-2\right)=12
Cuir y in aonad -2 in -3x-6y=12. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
-3x+12=12
Méadaigh -6 faoi -2.
-3x=0
Bain 12 ón dá thaobh den chothromóid.
x=0
Roinn an dá thaobh faoi -3.
x=0,y=-2
Tá an córas réitithe anois.