Réitigh do x,y.
x=1
y=2
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
-5x+10y=15,-5x+2y=-1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
-5x+10y=15
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
-5x=-10y+15
Bain 10y ón dá thaobh den chothromóid.
x=-\frac{1}{5}\left(-10y+15\right)
Roinn an dá thaobh faoi -5.
x=2y-3
Méadaigh -\frac{1}{5} faoi -10y+15.
-5\left(2y-3\right)+2y=-1
Cuir x in aonad 2y-3 sa chothromóid eile, -5x+2y=-1.
-10y+15+2y=-1
Méadaigh -5 faoi 2y-3.
-8y+15=-1
Suimigh -10y le 2y?
-8y=-16
Bain 15 ón dá thaobh den chothromóid.
y=2
Roinn an dá thaobh faoi -8.
x=2\times 2-3
Cuir y in aonad 2 in x=2y-3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=4-3
Méadaigh 2 faoi 2.
x=1
Suimigh -3 le 4?
x=1,y=2
Tá an córas réitithe anois.
-5x+10y=15,-5x+2y=-1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\-1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}-5&10\\-5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&10\\-5&2\end{matrix}\right))\left(\begin{matrix}15\\-1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-5\times 2-10\left(-5\right)}&-\frac{10}{-5\times 2-10\left(-5\right)}\\-\frac{-5}{-5\times 2-10\left(-5\right)}&-\frac{5}{-5\times 2-10\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}15\\-1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 15-\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 15-\frac{1}{8}\left(-1\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Déan an uimhríocht.
x=1,y=2
Asbhain na heilimintí maitríse x agus y.
-5x+10y=15,-5x+2y=-1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
-5x+5x+10y-2y=15+1
Dealaigh -5x+2y=-1 ó -5x+10y=15 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
10y-2y=15+1
Suimigh -5x le 5x? Cuirtear na téarmaí -5x agus 5x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
8y=15+1
Suimigh 10y le -2y?
8y=16
Suimigh 15 le 1?
y=2
Roinn an dá thaobh faoi 8.
-5x+2\times 2=-1
Cuir y in aonad 2 in -5x+2y=-1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
-5x+4=-1
Méadaigh 2 faoi 2.
-5x=-5
Bain 4 ón dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi -5.
x=1,y=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}