Réitigh do x,y.
x=3
y=2
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { l } { - 3 x + 3 y = - 3 } \\ { x - 9 y = - 15 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
-3x+3y=-3,x-9y=-15
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
-3x+3y=-3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
-3x=-3y-3
Bain 3y ón dá thaobh den chothromóid.
x=-\frac{1}{3}\left(-3y-3\right)
Roinn an dá thaobh faoi -3.
x=y+1
Méadaigh -\frac{1}{3} faoi -3y-3.
y+1-9y=-15
Cuir x in aonad y+1 sa chothromóid eile, x-9y=-15.
-8y+1=-15
Suimigh y le -9y?
-8y=-16
Bain 1 ón dá thaobh den chothromóid.
y=2
Roinn an dá thaobh faoi -8.
x=2+1
Cuir y in aonad 2 in x=y+1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=3
Suimigh 1 le 2?
x=3,y=2
Tá an córas réitithe anois.
-3x+3y=-3,x-9y=-15
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-15\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}-3&3\\1&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\\-\frac{1}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{24}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\left(-3\right)-\frac{1}{8}\left(-15\right)\\-\frac{1}{24}\left(-3\right)-\frac{1}{8}\left(-15\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Déan an uimhríocht.
x=3,y=2
Asbhain na heilimintí maitríse x agus y.
-3x+3y=-3,x-9y=-15
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
-3x+3y=-3,-3x-3\left(-9\right)y=-3\left(-15\right)
Chun -3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi -3.
-3x+3y=-3,-3x+27y=45
Simpligh.
-3x+3x+3y-27y=-3-45
Dealaigh -3x+27y=45 ó -3x+3y=-3 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3y-27y=-3-45
Suimigh -3x le 3x? Cuirtear na téarmaí -3x agus 3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-24y=-3-45
Suimigh 3y le -27y?
-24y=-48
Suimigh -3 le -45?
y=2
Roinn an dá thaobh faoi -24.
x-9\times 2=-15
Cuir y in aonad 2 in x-9y=-15. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x-18=-15
Méadaigh -9 faoi 2.
x=3
Cuir 18 leis an dá thaobh den chothromóid.
x=3,y=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}