Réitigh do x,y.
x=1
y=1
Graf
Tráth na gCeist
Simultaneous Equation
\left. \begin{array} { l } { - 10 x + 2 y = - 8 } \\ { 10 x - y = 9 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
-10x+2y=-8,10x-y=9
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
-10x+2y=-8
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
-10x=-2y-8
Bain 2y ón dá thaobh den chothromóid.
x=-\frac{1}{10}\left(-2y-8\right)
Roinn an dá thaobh faoi -10.
x=\frac{1}{5}y+\frac{4}{5}
Méadaigh -\frac{1}{10} faoi -2y-8.
10\left(\frac{1}{5}y+\frac{4}{5}\right)-y=9
Cuir x in aonad \frac{4+y}{5} sa chothromóid eile, 10x-y=9.
2y+8-y=9
Méadaigh 10 faoi \frac{4+y}{5}.
y+8=9
Suimigh 2y le -y?
y=1
Bain 8 ón dá thaobh den chothromóid.
x=\frac{1+4}{5}
Cuir y in aonad 1 in x=\frac{1}{5}y+\frac{4}{5}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=1
Suimigh \frac{4}{5} le \frac{1}{5} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=1
Tá an córas réitithe anois.
-10x+2y=-8,10x-y=9
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\9\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}-10&2\\10&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&2\\10&-1\end{matrix}\right))\left(\begin{matrix}-8\\9\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-10\left(-1\right)-2\times 10}&-\frac{2}{-10\left(-1\right)-2\times 10}\\-\frac{10}{-10\left(-1\right)-2\times 10}&-\frac{10}{-10\left(-1\right)-2\times 10}\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\9\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\left(-8\right)+\frac{1}{5}\times 9\\-8+9\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Déan an uimhríocht.
x=1,y=1
Asbhain na heilimintí maitríse x agus y.
-10x+2y=-8,10x-y=9
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
10\left(-10\right)x+10\times 2y=10\left(-8\right),-10\times 10x-10\left(-1\right)y=-10\times 9
Chun -10x agus 10x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 10 agus gach téarma ar gach taobh den dara cothromóid faoi -10.
-100x+20y=-80,-100x+10y=-90
Simpligh.
-100x+100x+20y-10y=-80+90
Dealaigh -100x+10y=-90 ó -100x+20y=-80 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
20y-10y=-80+90
Suimigh -100x le 100x? Cuirtear na téarmaí -100x agus 100x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
10y=-80+90
Suimigh 20y le -10y?
10y=10
Suimigh -80 le 90?
y=1
Roinn an dá thaobh faoi 10.
10x-1=9
Cuir y in aonad 1 in 10x-y=9. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
10x=10
Cuir 1 leis an dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 10.
x=1,y=1
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}