Luacháil
-10p^{8}
Difreálaigh w.r.t. p
-80p^{7}
Roinn
Cóipeáladh go dtí an ghearrthaisce
3mm^{2}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right)
Tá 3m urchomhairleach le -3m.
3m^{3}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right)
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 1 agus 2 chun 3 a bhaint amach.
0-5\left(-2\right)p^{4}\left(-p^{4}\right)
Comhcheangail 3m^{3} agus -3m^{3} chun 0 a fháil.
0-\left(-10p^{4}\left(-p^{4}\right)\right)
Méadaigh 5 agus -2 chun -10 a fháil.
0-10p^{4}p^{4}
Méadaigh -10 agus -1 chun 10 a fháil.
0-10p^{8}
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 4 agus 4 chun 8 a bhaint amach.
-10p^{8}
Is ionann rud ar bith móide nialas agus a shuim féin.
\frac{\mathrm{d}}{\mathrm{d}p}(3mm^{2}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right))
Tá 3m urchomhairleach le -3m.
\frac{\mathrm{d}}{\mathrm{d}p}(3m^{3}-3m^{3}-5\left(-2\right)p^{4}\left(-p^{4}\right))
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 1 agus 2 chun 3 a bhaint amach.
\frac{\mathrm{d}}{\mathrm{d}p}(0-5\left(-2\right)p^{4}\left(-p^{4}\right))
Comhcheangail 3m^{3} agus -3m^{3} chun 0 a fháil.
\frac{\mathrm{d}}{\mathrm{d}p}(0-\left(-10p^{4}\left(-p^{4}\right)\right))
Méadaigh 5 agus -2 chun -10 a fháil.
\frac{\mathrm{d}}{\mathrm{d}p}(0-10p^{4}p^{4})
Méadaigh -10 agus -1 chun 10 a fháil.
\frac{\mathrm{d}}{\mathrm{d}p}(0-10p^{8})
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 4 agus 4 chun 8 a bhaint amach.
\frac{\mathrm{d}}{\mathrm{d}p}(-10p^{8})
Is ionann rud ar bith móide nialas agus a shuim féin.
8\left(-10\right)p^{8-1}
Is é díorthach ax^{n} ná nax^{n-1}.
-80p^{8-1}
Méadaigh 8 faoi -10.
-80p^{7}
Dealaigh 1 ó 8.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}