Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(x-2\right)\left(x-2\right)=16
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Méadaigh x-2 agus x-2 chun \left(x-2\right)^{2} a fháil.
x^{2}-4x+4=16
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-2\right)^{2} a leathnú.
x^{2}-4x+4-16=0
Bain 16 ón dá thaobh.
x^{2}-4x-12=0
Dealaigh 16 ó 4 chun -12 a fháil.
a+b=-4 ab=-12
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}-4x-12 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-12 2,-6 3,-4
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -12.
1-12=-11 2-6=-4 3-4=-1
Áirigh an tsuim do gach péire.
a=-6 b=2
Is é an réiteach ná an péire a thugann an tsuim -4.
\left(x-6\right)\left(x+2\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=6 x=-2
Réitigh x-6=0 agus x+2=0 chun réitigh cothromóide a fháil.
x=6
Ní féidir leis an athróg x a bheith comhionann le -2.
\left(x-2\right)\left(x-2\right)=16
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Méadaigh x-2 agus x-2 chun \left(x-2\right)^{2} a fháil.
x^{2}-4x+4=16
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-2\right)^{2} a leathnú.
x^{2}-4x+4-16=0
Bain 16 ón dá thaobh.
x^{2}-4x-12=0
Dealaigh 16 ó 4 chun -12 a fháil.
a+b=-4 ab=1\left(-12\right)=-12
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-12 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-12 2,-6 3,-4
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -12.
1-12=-11 2-6=-4 3-4=-1
Áirigh an tsuim do gach péire.
a=-6 b=2
Is é an réiteach ná an péire a thugann an tsuim -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Athscríobh x^{2}-4x-12 mar \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Fág x as an áireamh sa chead ghrúpa agus 2 sa dara grúpa.
\left(x-6\right)\left(x+2\right)
Fág an téarma coitianta x-6 as an áireamh ag úsáid airí dháiligh.
x=6 x=-2
Réitigh x-6=0 agus x+2=0 chun réitigh cothromóide a fháil.
x=6
Ní féidir leis an athróg x a bheith comhionann le -2.
\left(x-2\right)\left(x-2\right)=16
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Méadaigh x-2 agus x-2 chun \left(x-2\right)^{2} a fháil.
x^{2}-4x+4=16
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(x-2\right)^{2} a leathnú.
x^{2}-4x+4-16=0
Bain 16 ón dá thaobh.
x^{2}-4x-12=0
Dealaigh 16 ó 4 chun -12 a fháil.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -4 in ionad b, agus -12 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Cearnóg -4.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Méadaigh -4 faoi -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Suimigh 16 le 48?
x=\frac{-\left(-4\right)±8}{2}
Tóg fréamh chearnach 64.
x=\frac{4±8}{2}
Tá 4 urchomhairleach le -4.
x=\frac{12}{2}
Réitigh an chothromóid x=\frac{4±8}{2} nuair is ionann ± agus plus. Suimigh 4 le 8?
x=6
Roinn 12 faoi 2.
x=-\frac{4}{2}
Réitigh an chothromóid x=\frac{4±8}{2} nuair is ionann ± agus míneas. Dealaigh 8 ó 4.
x=-2
Roinn -4 faoi 2.
x=6 x=-2
Tá an chothromóid réitithe anois.
x=6
Ní féidir leis an athróg x a bheith comhionann le -2.
\left(x-2\right)\left(x-2\right)=16
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x^{2}-4.
\left(x-2\right)^{2}=16
Méadaigh x-2 agus x-2 chun \left(x-2\right)^{2} a fháil.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-2=4 x-2=-4
Simpligh.
x=6 x=-2
Cuir 2 leis an dá thaobh den chothromóid.
x=6
Ní féidir leis an athróg x a bheith comhionann le -2.