Scipeáil chuig an bpríomhábhar
Réitigh do f,x,g,h,j,k,l,m,n,o,p,q,r,s.
Tick mark Image

Roinn

h=i
Cuir an ceathrú cothromóid san áireamh. Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
i=f\left(-3\right)
Cuir an tríú cothromóid san áireamh. Ionsáigh luachanna aitheanta na n-athróg sa chothromóid.
\frac{i}{-3}=f
Roinn an dá thaobh faoi -3.
-\frac{1}{3}i=f
Roinn i faoi -3 chun -\frac{1}{3}i a fháil.
f=-\frac{1}{3}i
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-\frac{1}{3}ix=-6x+3
Cuir an chéad cothromóid san áireamh. Ionsáigh luachanna aitheanta na n-athróg sa chothromóid.
-\frac{1}{3}ix+6x=3
Cuir 6x leis an dá thaobh.
\left(6-\frac{1}{3}i\right)x=3
Comhcheangail -\frac{1}{3}ix agus 6x chun \left(6-\frac{1}{3}i\right)x a fháil.
x=\frac{3}{6-\frac{1}{3}i}
Roinn an dá thaobh faoi 6-\frac{1}{3}i.
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
Iolraigh uimhreoir agus ainmneoir \frac{3}{6-\frac{1}{3}i} faoi chomhchuingeach coimpléascach an ainmneora, 6+\frac{1}{3}i.
x=\frac{18+i}{\frac{325}{9}}
Déan iolrúcháin in \frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}.
x=\frac{162}{325}+\frac{9}{325}i
Roinn 18+i faoi \frac{325}{9} chun \frac{162}{325}+\frac{9}{325}i a fháil.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Cuir an dara cothromóid san áireamh. Ionsáigh luachanna aitheanta na n-athróg sa chothromóid.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
Méadaigh 3 agus \frac{162}{325}+\frac{9}{325}i chun \frac{486}{325}+\frac{27}{325}i a fháil.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
Ríomh cumhacht \frac{162}{325}+\frac{9}{325}i de -3 agus faigh \frac{214}{27}-\frac{971}{729}i.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
Méadaigh 21 agus \frac{214}{27}-\frac{971}{729}i chun \frac{1498}{9}-\frac{6797}{243}i a fháil.
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
Suimigh \frac{486}{325}+\frac{27}{325}i agus \frac{1498}{9}-\frac{6797}{243}i chun \frac{491224}{2925}-\frac{2202464}{78975}i a fháil.
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
Roinn an dá thaobh faoi \frac{162}{325}+\frac{9}{325}i.
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
Iolraigh uimhreoir agus ainmneoir \frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} faoi chomhchuingeach coimpléascach an ainmneora, \frac{162}{325}-\frac{9}{325}i.
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
Déan iolrúcháin in \frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}.
g=\frac{727792}{2187}-\frac{18088}{243}i
Roinn \frac{55984}{675}-\frac{18088}{975}i faoi \frac{81}{325} chun \frac{727792}{2187}-\frac{18088}{243}i a fháil.
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i j=i k=i l=i m=i n=i o=i p=i q=i r=i s=i
Tá an córas réitithe anois.