Réitigh do x,y.
x=2
y=4
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left. \begin{array} { c } { x + 3 y = 14 } \\ { 4 x - y = 4 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x+3y=14,4x-y=4
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+3y=14
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-3y+14
Bain 3y ón dá thaobh den chothromóid.
4\left(-3y+14\right)-y=4
Cuir x in aonad -3y+14 sa chothromóid eile, 4x-y=4.
-12y+56-y=4
Méadaigh 4 faoi -3y+14.
-13y+56=4
Suimigh -12y le -y?
-13y=-52
Bain 56 ón dá thaobh den chothromóid.
y=4
Roinn an dá thaobh faoi -13.
x=-3\times 4+14
Cuir y in aonad 4 in x=-3y+14. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-12+14
Méadaigh -3 faoi 4.
x=2
Suimigh 14 le -12?
x=2,y=4
Tá an córas réitithe anois.
x+3y=14,4x-y=4
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}1&3\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\4\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&3\\4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\4\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&-1\end{matrix}\right))\left(\begin{matrix}14\\4\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3\times 4}&-\frac{3}{-1-3\times 4}\\-\frac{4}{-1-3\times 4}&\frac{1}{-1-3\times 4}\end{matrix}\right)\left(\begin{matrix}14\\4\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}&\frac{3}{13}\\\frac{4}{13}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}14\\4\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{13}\times 14+\frac{3}{13}\times 4\\\frac{4}{13}\times 14-\frac{1}{13}\times 4\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Déan an uimhríocht.
x=2,y=4
Asbhain na heilimintí maitríse x agus y.
x+3y=14,4x-y=4
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
4x+4\times 3y=4\times 14,4x-y=4
Chun x agus 4x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 4 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
4x+12y=56,4x-y=4
Simpligh.
4x-4x+12y+y=56-4
Dealaigh 4x-y=4 ó 4x+12y=56 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
12y+y=56-4
Suimigh 4x le -4x? Cuirtear na téarmaí 4x agus -4x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
13y=56-4
Suimigh 12y le y?
13y=52
Suimigh 56 le -4?
y=4
Roinn an dá thaobh faoi 13.
4x-4=4
Cuir y in aonad 4 in 4x-y=4. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
4x=8
Cuir 4 leis an dá thaobh den chothromóid.
x=2
Roinn an dá thaobh faoi 4.
x=2,y=4
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}