Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x-2y=0
Cuir an dara cothromóid san áireamh. Bain 2y ón dá thaobh.
3x+4y=10,x-2y=0
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x+4y=10
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=-4y+10
Bain 4y ón dá thaobh den chothromóid.
x=\frac{1}{3}\left(-4y+10\right)
Roinn an dá thaobh faoi 3.
x=-\frac{4}{3}y+\frac{10}{3}
Méadaigh \frac{1}{3} faoi -4y+10.
-\frac{4}{3}y+\frac{10}{3}-2y=0
Cuir x in aonad \frac{-4y+10}{3} sa chothromóid eile, x-2y=0.
-\frac{10}{3}y+\frac{10}{3}=0
Suimigh -\frac{4y}{3} le -2y?
-\frac{10}{3}y=-\frac{10}{3}
Bain \frac{10}{3} ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh den chothromóid faoi -\frac{10}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{-4+10}{3}
Cuir y in aonad 1 in x=-\frac{4}{3}y+\frac{10}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=2
Suimigh \frac{10}{3} le -\frac{4}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=2,y=1
Tá an córas réitithe anois.
x-2y=0
Cuir an dara cothromóid san áireamh. Bain 2y ón dá thaobh.
3x+4y=10,x-2y=0
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\0\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&4\\1&-2\end{matrix}\right))\left(\begin{matrix}3&4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&4\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&-2\end{matrix}\right))\left(\begin{matrix}10\\0\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-4}&-\frac{4}{3\left(-2\right)-4}\\-\frac{1}{3\left(-2\right)-4}&\frac{3}{3\left(-2\right)-4}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\\frac{1}{10}&-\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}10\\0\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10\\\frac{1}{10}\times 10\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Déan an uimhríocht.
x=2,y=1
Asbhain na heilimintí maitríse x agus y.
x-2y=0
Cuir an dara cothromóid san áireamh. Bain 2y ón dá thaobh.
3x+4y=10,x-2y=0
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x+4y=10,3x+3\left(-2\right)y=0
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x+4y=10,3x-6y=0
Simpligh.
3x-3x+4y+6y=10
Dealaigh 3x-6y=0 ó 3x+4y=10 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
4y+6y=10
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
10y=10
Suimigh 4y le 6y?
y=1
Roinn an dá thaobh faoi 10.
x-2=0
Cuir y in aonad 1 in x-2y=0. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=2
Cuir 2 leis an dá thaobh den chothromóid.
x=2,y=1
Tá an córas réitithe anois.