Réitigh do x,y.
x=\sqrt{2}+1\approx 2.414213562
y=\frac{\sqrt{2}}{2}\approx 0.707106781
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{1-\frac{2}{\sqrt{2}+1+1}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Cuir an chéad cothromóid san áireamh. Ionsáigh luachanna aitheanta na n-athróg sa chothromóid.
\frac{1-\frac{2}{\sqrt{2}+2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Suimigh 1 agus 1 chun 2 a fháil.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}-2 chun ainmneoir \frac{2}{\sqrt{2}+2} a thiontú in uimhir chóimheasta.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Mar shampla \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{2-4}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Cearnóg \sqrt{2}. Cearnóg 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{-2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Dealaigh 4 ó 2 chun -2 a fháil.
\frac{1-\left(-\left(\sqrt{2}-2\right)\right)}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Cealaigh -2 agus -2.
\frac{1+\sqrt{2}-2}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Tá \sqrt{2}-2 urchomhairleach le -\left(\sqrt{2}-2\right).
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Dealaigh 2 ó 1 chun -1 a fháil.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{2}+1\right)^{2} a leathnú.
\frac{-1+\sqrt{2}}{\frac{2+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Is é 2 uimhir chearnach \sqrt{2}.
\frac{-1+\sqrt{2}}{\frac{3+2\sqrt{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Suimigh 2 agus 1 chun 3 a fháil.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+1+1}}=y
Suimigh 3 agus 1 chun 4 a fháil.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2}}=y
Suimigh 1 agus 1 chun 2 a fháil.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}=y
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}-2 chun ainmneoir \frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2} a thiontú in uimhir chóimheasta.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}=y
Mar shampla \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{2-4}}=y
Cearnóg \sqrt{2}. Cearnóg 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}}=y
Dealaigh 4 ó 2 chun -2 a fháil.
\frac{\left(-1+\sqrt{2}\right)\left(-2\right)}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Roinn -1+\sqrt{2} faoi \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} trí -1+\sqrt{2} a mhéadú faoi dheilín \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Úsáid an t-airí dáileach chun -1+\sqrt{2} a mhéadú faoi -2.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\sqrt{2}-2\right)\left(\sqrt{2}-2\right)}=y
Úsáid an t-airí dáileach chun -2 a mhéadú faoi \sqrt{2}+1.
\frac{2-2\sqrt{2}}{\left(4-2\right)\left(\sqrt{2}-2\right)}=y
Comhcheangail 2\sqrt{2} agus -2\sqrt{2} chun 0 a fháil.
\frac{2-2\sqrt{2}}{2\left(\sqrt{2}-2\right)}=y
Dealaigh 2 ó 4 chun 2 a fháil.
\frac{2-2\sqrt{2}}{2\sqrt{2}-4}=y
Úsáid an t-airí dáileach chun 2 a mhéadú faoi \sqrt{2}-2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right)}=y
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2\sqrt{2}+4 chun ainmneoir \frac{2-2\sqrt{2}}{2\sqrt{2}-4} a thiontú in uimhir chóimheasta.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}=y
Mar shampla \left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}=y
Fairsingigh \left(2\sqrt{2}\right)^{2}
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}=y
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\times 2-4^{2}}=y
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-4^{2}}=y
Méadaigh 4 agus 2 chun 8 a fháil.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-16}=y
Ríomh cumhacht 4 de 2 agus faigh 16.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}=y
Dealaigh 16 ó 8 chun -8 a fháil.
y=\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
y=\frac{-4\sqrt{2}+8-4\left(\sqrt{2}\right)^{2}}{-8}
Úsáid an t-airí dáileach chun 2-2\sqrt{2} a mhéadú faoi 2\sqrt{2}+4 agus chun téarmaí comhchosúla a chumasc.
y=\frac{-4\sqrt{2}+8-4\times 2}{-8}
Is é 2 uimhir chearnach \sqrt{2}.
y=\frac{-4\sqrt{2}+8-8}{-8}
Méadaigh -4 agus 2 chun -8 a fháil.
y=\frac{-4\sqrt{2}}{-8}
Dealaigh 8 ó 8 chun 0 a fháil.
y=\frac{1}{2}\sqrt{2}
Roinn -4\sqrt{2} faoi -8 chun \frac{1}{2}\sqrt{2} a fháil.
x=\sqrt{2}+1 y=\frac{1}{2}\sqrt{2}
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}