Scipeáil chuig an bpríomhábhar
Ríomh an Deitéarmanant
Tick mark Image
Luacháil
Tick mark Image

Roinn

det(\left(\begin{matrix}2&-1&-3\\-2&1&4\\1&3&0\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh na dtrasnán.
\left(\begin{matrix}2&-1&-3&2&-1\\-2&1&4&-2&1\\1&3&0&1&3\end{matrix}\right)
Forbair an mhaitrís bhunaidh tríd an gcéad dá cholún a athdhéanamh mar an gceathrú agus an gcúigiú colún.
-4-3\left(-2\right)\times 3=14
Ag tosú ag an iontráil uachtair ar chlé, méadaigh síos feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
-3+3\times 4\times 2=21
Ag tosú ag an iontráil íochtair ar chlé, méadaigh suas feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
14-21
Dealaigh suim na dtorthaí trasnánacha suas ó shuim na dtorthaí trasnánacha síos.
-7
Dealaigh 21 ó 14.
det(\left(\begin{matrix}2&-1&-3\\-2&1&4\\1&3&0\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh an fhairsingithe de réir mionúr (ar a dtugtar forbairt de réir comhfhachtóirí chomh maith).
2det(\left(\begin{matrix}1&4\\3&0\end{matrix}\right))-\left(-det(\left(\begin{matrix}-2&4\\1&0\end{matrix}\right))\right)-3det(\left(\begin{matrix}-2&1\\1&3\end{matrix}\right))
Le fairsingiú de réir mionúr, méadaigh gach eilimint den chéad sraith faoina mhionúr, arb é sin deitéarmanant na maitríse 2\times 2 a cruthaíodh tríd an ró agus an colún ina bhfuil an eilimint sin a scriosadh, agus ansin é a mhéadú faoi chomhartha suímh na heiliminte.
2\left(-3\times 4\right)-\left(-\left(-4\right)\right)-3\left(-2\times 3-1\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is ionann an deitéarmanant agus ad-bc.
2\left(-12\right)-\left(-\left(-4\right)\right)-3\left(-7\right)
Simpligh.
-7
Suimigh na téarmaí chun an toradh deiridh a fháil.