Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

det(\left(\begin{matrix}2&-1&1\\1&1&1\\-1&1&5\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh na dtrasnán.
\left(\begin{matrix}2&-1&1&2&-1\\1&1&1&1&1\\-1&1&5&-1&1\end{matrix}\right)
Forbair an mhaitrís bhunaidh tríd an gcéad dá cholún a athdhéanamh mar an gceathrú agus an gcúigiú colún.
2\times 5-\left(-1\right)+1=12
Ag tosú ag an iontráil uachtair ar chlé, méadaigh síos feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
-1+2+5\left(-1\right)=-4
Ag tosú ag an iontráil íochtair ar chlé, méadaigh suas feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
12-\left(-4\right)
Dealaigh suim na dtorthaí trasnánacha suas ó shuim na dtorthaí trasnánacha síos.
16
Dealaigh -4 ó 12.
det(\left(\begin{matrix}2&-1&1\\1&1&1\\-1&1&5\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh an fhairsingithe de réir mionúr (ar a dtugtar forbairt de réir comhfhachtóirí chomh maith).
2det(\left(\begin{matrix}1&1\\1&5\end{matrix}\right))-\left(-det(\left(\begin{matrix}1&1\\-1&5\end{matrix}\right))\right)+det(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))
Le fairsingiú de réir mionúr, méadaigh gach eilimint den chéad sraith faoina mhionúr, arb é sin deitéarmanant na maitríse 2\times 2 a cruthaíodh tríd an ró agus an colún ina bhfuil an eilimint sin a scriosadh, agus ansin é a mhéadú faoi chomhartha suímh na heiliminte.
2\left(5-1\right)-\left(-\left(5-\left(-1\right)\right)\right)+1-\left(-1\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is ionann an deitéarmanant agus ad-bc.
2\times 4-\left(-6\right)+2
Simpligh.
16
Suimigh na téarmaí chun an toradh deiridh a fháil.