\left| \begin{array} { l l l } { i } & { j } & { k } \\ { 1 } & { 2 } & { 3 } \\ { 4 } & { 5 } & { 6 } \end{array} \right|
Luacháil
6j-3k-3i
Roinn
Cóipeáladh go dtí an ghearrthaisce
det(\left(\begin{matrix}i&j&k\\1&2&3\\4&5&6\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh na dtrasnán.
\left(\begin{matrix}i&j&k&i&j\\1&2&3&1&2\\4&5&6&4&5\end{matrix}\right)
Forbair an mhaitrís bhunaidh tríd an gcéad dá cholún a athdhéanamh mar an gceathrú agus an gcúigiú colún.
2i\times 6+j\times 3\times 4+k\times 5=12j+5k+12i
Ag tosú ag an iontráil uachtair ar chlé, méadaigh síos feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
4\times 2k+5\times \left(3i\right)+6j=6j+8k+15i
Ag tosú ag an iontráil íochtair ar chlé, méadaigh suas feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
12j+5k+12i-\left(6j+8k+15i\right)
Dealaigh suim na dtorthaí trasnánacha suas ó shuim na dtorthaí trasnánacha síos.
6j-3k-3i
Dealaigh 8k+15i+6j ó 12i+12j+5k.
det(\left(\begin{matrix}i&j&k\\1&2&3\\4&5&6\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh an fhairsingithe de réir mionúr (ar a dtugtar forbairt de réir comhfhachtóirí chomh maith).
idet(\left(\begin{matrix}2&3\\5&6\end{matrix}\right))-jdet(\left(\begin{matrix}1&3\\4&6\end{matrix}\right))+kdet(\left(\begin{matrix}1&2\\4&5\end{matrix}\right))
Le fairsingiú de réir mionúr, méadaigh gach eilimint den chéad sraith faoina mhionúr, arb é sin deitéarmanant na maitríse 2\times 2 a cruthaíodh tríd an ró agus an colún ina bhfuil an eilimint sin a scriosadh, agus ansin é a mhéadú faoi chomhartha suímh na heiliminte.
i\left(2\times 6-5\times 3\right)-j\left(6-4\times 3\right)+k\left(5-4\times 2\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is ionann an deitéarmanant agus ad-bc.
-3i-j\left(-6\right)+k\left(-3\right)
Simpligh.
6j-3k-3i
Suimigh na téarmaí chun an toradh deiridh a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}