Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

det(\left(\begin{matrix}1&1&1\\4&1&2\\0&1&6\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh na dtrasnán.
\left(\begin{matrix}1&1&1&1&1\\4&1&2&4&1\\0&1&6&0&1\end{matrix}\right)
Forbair an mhaitrís bhunaidh tríd an gcéad dá cholún a athdhéanamh mar an gceathrú agus an gcúigiú colún.
6+4=10
Ag tosú ag an iontráil uachtair ar chlé, méadaigh síos feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
2+6\times 4=26
Ag tosú ag an iontráil íochtair ar chlé, méadaigh suas feadh na dtrasnán, agus suimigh na dtorthaí a bheidh mar thoradh air.
10-26
Dealaigh suim na dtorthaí trasnánacha suas ó shuim na dtorthaí trasnánacha síos.
-16
Dealaigh 26 ó 10.
det(\left(\begin{matrix}1&1&1\\4&1&2\\0&1&6\end{matrix}\right))
Faigh deitéarmanant na maitríse ag baint úsáid as modh an fhairsingithe de réir mionúr (ar a dtugtar forbairt de réir comhfhachtóirí chomh maith).
det(\left(\begin{matrix}1&2\\1&6\end{matrix}\right))-det(\left(\begin{matrix}4&2\\0&6\end{matrix}\right))+det(\left(\begin{matrix}4&1\\0&1\end{matrix}\right))
Le fairsingiú de réir mionúr, méadaigh gach eilimint den chéad sraith faoina mhionúr, arb é sin deitéarmanant na maitríse 2\times 2 a cruthaíodh tríd an ró agus an colún ina bhfuil an eilimint sin a scriosadh, agus ansin é a mhéadú faoi chomhartha suímh na heiliminte.
6-2-4\times 6+4
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is ionann an deitéarmanant agus ad-bc.
4-24+4
Simpligh.
-16
Suimigh na téarmaí chun an toradh deiridh a fháil.