Scipeáil chuig an bpríomhábhar
Réitigh do y,x. (complex solution)
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

y-3x=8
Cuir an chéad cothromóid san áireamh. Bain 3x ón dá thaobh.
y=3x+8
Bain -3x ón dá thaobh den chothromóid.
x^{2}+\left(3x+8\right)^{2}=4
Cuir y in aonad 3x+8 sa chothromóid eile, x^{2}+y^{2}=4.
x^{2}+9x^{2}+48x+64=4
Cearnóg 3x+8.
10x^{2}+48x+64=4
Suimigh x^{2} le 9x^{2}?
10x^{2}+48x+60=0
Bain 4 ón dá thaobh den chothromóid.
x=\frac{-48±\sqrt{48^{2}-4\times 10\times 60}}{2\times 10}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1+1\times 3^{2} in ionad a, 1\times 8\times 2\times 3 in ionad b, agus 60 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 10\times 60}}{2\times 10}
Cearnóg 1\times 8\times 2\times 3.
x=\frac{-48±\sqrt{2304-40\times 60}}{2\times 10}
Méadaigh -4 faoi 1+1\times 3^{2}.
x=\frac{-48±\sqrt{2304-2400}}{2\times 10}
Méadaigh -40 faoi 60.
x=\frac{-48±\sqrt{-96}}{2\times 10}
Suimigh 2304 le -2400?
x=\frac{-48±4\sqrt{6}i}{2\times 10}
Tóg fréamh chearnach -96.
x=\frac{-48±4\sqrt{6}i}{20}
Méadaigh 2 faoi 1+1\times 3^{2}.
x=\frac{-48+4\sqrt{6}i}{20}
Réitigh an chothromóid x=\frac{-48±4\sqrt{6}i}{20} nuair is ionann ± agus plus. Suimigh -48 le 4i\sqrt{6}?
x=\frac{-12+\sqrt{6}i}{5}
Roinn -48+4i\sqrt{6} faoi 20.
x=\frac{-4\sqrt{6}i-48}{20}
Réitigh an chothromóid x=\frac{-48±4\sqrt{6}i}{20} nuair is ionann ± agus míneas. Dealaigh 4i\sqrt{6} ó -48.
x=\frac{-\sqrt{6}i-12}{5}
Roinn -48-4i\sqrt{6} faoi 20.
y=3\times \frac{-12+\sqrt{6}i}{5}+8
Tá dhá réiteach ann do x: \frac{-12+i\sqrt{6}}{5} agus \frac{-12-i\sqrt{6}}{5}. Cuir x in aonad \frac{-12+i\sqrt{6}}{5} sa chothromóid eile y=3x+8 chun an réiteach comhfhreagrach do y a shásaíonn an dá chothromóid a fháil.
y=3\times \frac{-\sqrt{6}i-12}{5}+8
Ansin cuir x in aonad \frac{-12-i\sqrt{6}}{5} sa chothromóid eile y=3x+8 agus faigh réiteach chun an réiteach comhfhreagrach do y a shásaíonn an dá chothromóid a fháil.
y=3\times \frac{-12+\sqrt{6}i}{5}+8,x=\frac{-12+\sqrt{6}i}{5}\text{ or }y=3\times \frac{-\sqrt{6}i-12}{5}+8,x=\frac{-\sqrt{6}i-12}{5}
Tá an córas réitithe anois.