Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

4x-7y=5
Cuir an dara cothromóid san áireamh. Bain 7y ón dá thaobh.
x-y=2,4x-7y=5
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x-y=2
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=y+2
Cuir y leis an dá thaobh den chothromóid.
4\left(y+2\right)-7y=5
Cuir x in aonad y+2 sa chothromóid eile, 4x-7y=5.
4y+8-7y=5
Méadaigh 4 faoi y+2.
-3y+8=5
Suimigh 4y le -7y?
-3y=-3
Bain 8 ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh faoi -3.
x=1+2
Cuir y in aonad 1 in x=y+2. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=3
Suimigh 2 le 1?
x=3,y=1
Tá an córas réitithe anois.
4x-7y=5
Cuir an dara cothromóid san áireamh. Bain 7y ón dá thaobh.
x-y=2,4x-7y=5
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-1\\4&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-7\end{matrix}\right))\left(\begin{matrix}2\\5\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-4\right)}&-\frac{-1}{-7-\left(-4\right)}\\-\frac{4}{-7-\left(-4\right)}&\frac{1}{-7-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{1}{3}\\\frac{4}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2\\5\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 2-\frac{1}{3}\times 5\\\frac{4}{3}\times 2-\frac{1}{3}\times 5\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Déan an uimhríocht.
x=3,y=1
Asbhain na heilimintí maitríse x agus y.
4x-7y=5
Cuir an dara cothromóid san áireamh. Bain 7y ón dá thaobh.
x-y=2,4x-7y=5
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
4x+4\left(-1\right)y=4\times 2,4x-7y=5
Chun x agus 4x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 4 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
4x-4y=8,4x-7y=5
Simpligh.
4x-4x-4y+7y=8-5
Dealaigh 4x-7y=5 ó 4x-4y=8 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-4y+7y=8-5
Suimigh 4x le -4x? Cuirtear na téarmaí 4x agus -4x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
3y=8-5
Suimigh -4y le 7y?
3y=3
Suimigh 8 le -5?
y=1
Roinn an dá thaobh faoi 3.
4x-7=5
Cuir y in aonad 1 in 4x-7y=5. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
4x=12
Cuir 7 leis an dá thaobh den chothromóid.
x=3
Roinn an dá thaobh faoi 4.
x=3,y=1
Tá an córas réitithe anois.