\left\{ \begin{array} { l } { x - 6 y = 3 } \\ { 2 x - 18 y = - 6 } \end{array} \right.
Réitigh do x,y.
x=15
y=2
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { x - 6 y = 3 } \\ { 2 x - 18 y = - 6 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x-6y=3,2x-18y=-6
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x-6y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=6y+3
Cuir 6y leis an dá thaobh den chothromóid.
2\left(6y+3\right)-18y=-6
Cuir x in aonad 6y+3 sa chothromóid eile, 2x-18y=-6.
12y+6-18y=-6
Méadaigh 2 faoi 6y+3.
-6y+6=-6
Suimigh 12y le -18y?
-6y=-12
Bain 6 ón dá thaobh den chothromóid.
y=2
Roinn an dá thaobh faoi -6.
x=6\times 2+3
Cuir y in aonad 2 in x=6y+3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=12+3
Méadaigh 6 faoi 2.
x=15
Suimigh 3 le 12?
x=15,y=2
Tá an córas réitithe anois.
x-6y=3,2x-18y=-6
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-6\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&-6\\2&-18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\2&-18\end{matrix}\right))\left(\begin{matrix}3\\-6\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{-18-\left(-6\times 2\right)}&-\frac{-6}{-18-\left(-6\times 2\right)}\\-\frac{2}{-18-\left(-6\times 2\right)}&\frac{1}{-18-\left(-6\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\\frac{1}{3}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}3\\-6\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 3-\left(-6\right)\\\frac{1}{3}\times 3-\frac{1}{6}\left(-6\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\2\end{matrix}\right)
Déan an uimhríocht.
x=15,y=2
Asbhain na heilimintí maitríse x agus y.
x-6y=3,2x-18y=-6
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2x+2\left(-6\right)y=2\times 3,2x-18y=-6
Chun x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 1.
2x-12y=6,2x-18y=-6
Simpligh.
2x-2x-12y+18y=6+6
Dealaigh 2x-18y=-6 ó 2x-12y=6 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-12y+18y=6+6
Suimigh 2x le -2x? Cuirtear na téarmaí 2x agus -2x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
6y=6+6
Suimigh -12y le 18y?
6y=12
Suimigh 6 le 6?
y=2
Roinn an dá thaobh faoi 6.
2x-18\times 2=-6
Cuir y in aonad 2 in 2x-18y=-6. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x-36=-6
Méadaigh -18 faoi 2.
2x=30
Cuir 36 leis an dá thaobh den chothromóid.
x=15
Roinn an dá thaobh faoi 2.
x=15,y=2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}