Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+y=7,3x+y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-y+7
Bain y ón dá thaobh den chothromóid.
3\left(-y+7\right)+y=1
Cuir x in aonad -y+7 sa chothromóid eile, 3x+y=1.
-3y+21+y=1
Méadaigh 3 faoi -y+7.
-2y+21=1
Suimigh -3y le y?
-2y=-20
Bain 21 ón dá thaobh den chothromóid.
y=10
Roinn an dá thaobh faoi -2.
x=-10+7
Cuir y in aonad 10 in x=-y+7. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-3
Suimigh 7 le -10?
x=-3,y=10
Tá an córas réitithe anois.
x+y=7,3x+y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}1&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&1\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{1}{1-3}\\-\frac{3}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{3}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 7+\frac{1}{2}\\\frac{3}{2}\times 7-\frac{1}{2}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\10\end{matrix}\right)
Déan an uimhríocht.
x=-3,y=10
Asbhain na heilimintí maitríse x agus y.
x+y=7,3x+y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x-3x+y-y=7-1
Dealaigh 3x+y=1 ó x+y=7 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x-3x=7-1
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-2x=7-1
Suimigh x le -3x?
-2x=6
Suimigh 7 le -1?
x=-3
Roinn an dá thaobh faoi -2.
3\left(-3\right)+y=1
Cuir x in aonad -3 in 3x+y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
-9+y=1
Méadaigh 3 faoi -3.
y=10
Cuir 9 leis an dá thaobh den chothromóid.
x=-3,y=10
Tá an córas réitithe anois.