Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x+y=3,-x+y=\frac{3}{4}
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
x+y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-y+3
Bain y ón dá thaobh den chothromóid.
-\left(-y+3\right)+y=\frac{3}{4}
Cuir x in aonad -y+3 sa chothromóid eile, -x+y=\frac{3}{4}.
y-3+y=\frac{3}{4}
Méadaigh -1 faoi -y+3.
2y-3=\frac{3}{4}
Suimigh y le y?
2y=\frac{15}{4}
Cuir 3 leis an dá thaobh den chothromóid.
y=\frac{15}{8}
Roinn an dá thaobh faoi 2.
x=-\frac{15}{8}+3
Cuir y in aonad \frac{15}{8} in x=-y+3. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{9}{8}
Suimigh 3 le -\frac{15}{8}?
x=\frac{9}{8},y=\frac{15}{8}
Tá an córas réitithe anois.
x+y=3,-x+y=\frac{3}{4}
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}3\\\frac{3}{4}\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 3-\frac{1}{2}\times \frac{3}{4}\\\frac{1}{2}\times 3+\frac{1}{2}\times \frac{3}{4}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{15}{8}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{9}{8},y=\frac{15}{8}
Asbhain na heilimintí maitríse x agus y.
x+y=3,-x+y=\frac{3}{4}
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
x+x+y-y=3-\frac{3}{4}
Dealaigh -x+y=\frac{3}{4} ó x+y=3 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
x+x=3-\frac{3}{4}
Suimigh y le -y? Cuirtear na téarmaí y agus -y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
2x=3-\frac{3}{4}
Suimigh x le x?
2x=\frac{9}{4}
Suimigh 3 le -\frac{3}{4}?
x=\frac{9}{8}
Roinn an dá thaobh faoi 2.
-\frac{9}{8}+y=\frac{3}{4}
Cuir x in aonad \frac{9}{8} in -x+y=\frac{3}{4}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
y=\frac{15}{8}
Cuir \frac{9}{8} leis an dá thaobh den chothromóid.
x=\frac{9}{8},y=\frac{15}{8}
Tá an córas réitithe anois.