\left\{ \begin{array} { l } { x + y = 16 } \\ { x ^ { 2 } + y ^ { 2 } = 64 } \end{array} \right.
Réitigh do x,y. (complex solution)
x=8+4\sqrt{2}i\approx 8+5.656854249i\text{, }y=-4\sqrt{2}i+8\approx 8-5.656854249i
x=-4\sqrt{2}i+8\approx 8-5.656854249i\text{, }y=8+4\sqrt{2}i\approx 8+5.656854249i
Graf
Tráth na gCeist
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { x + y = 16 } \\ { x ^ { 2 } + y ^ { 2 } = 64 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
x+y=16
Réitigh x+y=16 do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
x=-y+16
Bain y ón dá thaobh den chothromóid.
y^{2}+\left(-y+16\right)^{2}=64
Cuir x in aonad -y+16 sa chothromóid eile, y^{2}+x^{2}=64.
y^{2}+y^{2}-32y+256=64
Cearnóg -y+16.
2y^{2}-32y+256=64
Suimigh y^{2} le y^{2}?
2y^{2}-32y+192=0
Bain 64 ón dá thaobh den chothromóid.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1+1\left(-1\right)^{2} in ionad a, 1\times 16\left(-1\right)\times 2 in ionad b, agus 192 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Cearnóg 1\times 16\left(-1\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Méadaigh -4 faoi 1+1\left(-1\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Méadaigh -8 faoi 192.
y=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Suimigh 1024 le -1536?
y=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Tóg fréamh chearnach -512.
y=\frac{32±16\sqrt{2}i}{2\times 2}
Tá 32 urchomhairleach le 1\times 16\left(-1\right)\times 2.
y=\frac{32±16\sqrt{2}i}{4}
Méadaigh 2 faoi 1+1\left(-1\right)^{2}.
y=\frac{32+2^{\frac{9}{2}}i}{4}
Réitigh an chothromóid y=\frac{32±16\sqrt{2}i}{4} nuair is ionann ± agus plus. Suimigh 32 le 16i\sqrt{2}?
y=8+2^{\frac{5}{2}}i
Roinn 32+i\times 2^{\frac{9}{2}} faoi 4.
y=\frac{-2^{\frac{9}{2}}i+32}{4}
Réitigh an chothromóid y=\frac{32±16\sqrt{2}i}{4} nuair is ionann ± agus míneas. Dealaigh 16i\sqrt{2} ó 32.
y=-2^{\frac{5}{2}}i+8
Roinn 32-i\times 2^{\frac{9}{2}} faoi 4.
x=-\left(8+2^{\frac{5}{2}}i\right)+16
Tá dhá réiteach ann do y: 8+i\times 2^{\frac{5}{2}} agus 8-i\times 2^{\frac{5}{2}}. Cuir y in aonad 8+i\times 2^{\frac{5}{2}} sa chothromóid eile x=-y+16 chun an réiteach comhfhreagrach do x a shásaíonn an dá chothromóid a fháil.
x=-\left(-2^{\frac{5}{2}}i+8\right)+16
Ansin cuir y in aonad 8-i\times 2^{\frac{5}{2}} sa chothromóid eile x=-y+16 agus faigh réiteach chun an réiteach comhfhreagrach do x a shásaíonn an dá chothromóid a fháil.
x=-\left(8+2^{\frac{5}{2}}i\right)+16,y=8+2^{\frac{5}{2}}i\text{ or }x=-\left(-2^{\frac{5}{2}}i+8\right)+16,y=-2^{\frac{5}{2}}i+8
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}