\left\{ \begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 100 } \\ { a + b = 20 } \end{array} \right.
Réitigh do a,b.
a=10+5\sqrt{2}i\approx 10+7.071067812i\text{, }b=-5\sqrt{2}i+10\approx 10-7.071067812i
a=-5\sqrt{2}i+10\approx 10-7.071067812i\text{, }b=10+5\sqrt{2}i\approx 10+7.071067812i
Tráth na gCeist
Complex Number
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { a ^ { 2 } + b ^ { 2 } = 100 } \\ { a + b = 20 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=20
Réitigh a+b=20 do a trí a ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
a=-b+20
Bain b ón dá thaobh den chothromóid.
b^{2}+\left(-b+20\right)^{2}=100
Cuir a in aonad -b+20 sa chothromóid eile, b^{2}+a^{2}=100.
b^{2}+b^{2}-40b+400=100
Cearnóg -b+20.
2b^{2}-40b+400=100
Suimigh b^{2} le b^{2}?
2b^{2}-40b+300=0
Bain 100 ón dá thaobh den chothromóid.
b=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 2\times 300}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1+1\left(-1\right)^{2} in ionad a, 1\times 20\left(-1\right)\times 2 in ionad b, agus 300 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-40\right)±\sqrt{1600-4\times 2\times 300}}{2\times 2}
Cearnóg 1\times 20\left(-1\right)\times 2.
b=\frac{-\left(-40\right)±\sqrt{1600-8\times 300}}{2\times 2}
Méadaigh -4 faoi 1+1\left(-1\right)^{2}.
b=\frac{-\left(-40\right)±\sqrt{1600-2400}}{2\times 2}
Méadaigh -8 faoi 300.
b=\frac{-\left(-40\right)±\sqrt{-800}}{2\times 2}
Suimigh 1600 le -2400?
b=\frac{-\left(-40\right)±20\sqrt{2}i}{2\times 2}
Tóg fréamh chearnach -800.
b=\frac{40±20\sqrt{2}i}{2\times 2}
Tá 40 urchomhairleach le 1\times 20\left(-1\right)\times 2.
b=\frac{40±20\sqrt{2}i}{4}
Méadaigh 2 faoi 1+1\left(-1\right)^{2}.
b=\frac{40+20\sqrt{2}i}{4}
Réitigh an chothromóid b=\frac{40±20\sqrt{2}i}{4} nuair is ionann ± agus plus. Suimigh 40 le 20i\sqrt{2}?
b=10+5\sqrt{2}i
Roinn 40+20i\sqrt{2} faoi 4.
b=\frac{-20\sqrt{2}i+40}{4}
Réitigh an chothromóid b=\frac{40±20\sqrt{2}i}{4} nuair is ionann ± agus míneas. Dealaigh 20i\sqrt{2} ó 40.
b=-5\sqrt{2}i+10
Roinn 40-20i\sqrt{2} faoi 4.
a=-\left(10+5\sqrt{2}i\right)+20
Tá dhá réiteach ann do b: 10+5i\sqrt{2} agus 10-5i\sqrt{2}. Cuir b in aonad 10+5i\sqrt{2} sa chothromóid eile a=-b+20 chun an réiteach comhfhreagrach do a a shásaíonn an dá chothromóid a fháil.
a=-\left(-5\sqrt{2}i+10\right)+20
Ansin cuir b in aonad 10-5i\sqrt{2} sa chothromóid eile a=-b+20 agus faigh réiteach chun an réiteach comhfhreagrach do a a shásaíonn an dá chothromóid a fháil.
a=-\left(10+5\sqrt{2}i\right)+20,b=10+5\sqrt{2}i\text{ or }a=-\left(-5\sqrt{2}i+10\right)+20,b=-5\sqrt{2}i+10
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}