\left\{ \begin{array} { l } { 6 x + 8 y = 20 } \\ { 5 y + 3 x = 8 } \end{array} \right.
Réitigh do x,y.
x=6
y=-2
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { 6 x + 8 y = 20 } \\ { 5 y + 3 x = 8 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
6x+8y=20,3x+5y=8
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
6x+8y=20
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
6x=-8y+20
Bain 8y ón dá thaobh den chothromóid.
x=\frac{1}{6}\left(-8y+20\right)
Roinn an dá thaobh faoi 6.
x=-\frac{4}{3}y+\frac{10}{3}
Méadaigh \frac{1}{6} faoi -8y+20.
3\left(-\frac{4}{3}y+\frac{10}{3}\right)+5y=8
Cuir x in aonad \frac{-4y+10}{3} sa chothromóid eile, 3x+5y=8.
-4y+10+5y=8
Méadaigh 3 faoi \frac{-4y+10}{3}.
y+10=8
Suimigh -4y le 5y?
y=-2
Bain 10 ón dá thaobh den chothromóid.
x=-\frac{4}{3}\left(-2\right)+\frac{10}{3}
Cuir y in aonad -2 in x=-\frac{4}{3}y+\frac{10}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{8+10}{3}
Méadaigh -\frac{4}{3} faoi -2.
x=6
Suimigh \frac{10}{3} le \frac{8}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=6,y=-2
Tá an córas réitithe anois.
6x+8y=20,3x+5y=8
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\8\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}6&8\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}6&8\\3&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&8\\3&5\end{matrix}\right))\left(\begin{matrix}20\\8\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-8\times 3}&-\frac{8}{6\times 5-8\times 3}\\-\frac{3}{6\times 5-8\times 3}&\frac{6}{6\times 5-8\times 3}\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-\frac{4}{3}\\-\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}20\\8\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\times 20-\frac{4}{3}\times 8\\-\frac{1}{2}\times 20+8\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
Déan an uimhríocht.
x=6,y=-2
Asbhain na heilimintí maitríse x agus y.
6x+8y=20,3x+5y=8
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 6x+3\times 8y=3\times 20,6\times 3x+6\times 5y=6\times 8
Chun 6x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 6.
18x+24y=60,18x+30y=48
Simpligh.
18x-18x+24y-30y=60-48
Dealaigh 18x+30y=48 ó 18x+24y=60 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
24y-30y=60-48
Suimigh 18x le -18x? Cuirtear na téarmaí 18x agus -18x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-6y=60-48
Suimigh 24y le -30y?
-6y=12
Suimigh 60 le -48?
y=-2
Roinn an dá thaobh faoi -6.
3x+5\left(-2\right)=8
Cuir y in aonad -2 in 3x+5y=8. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x-10=8
Méadaigh 5 faoi -2.
3x=18
Cuir 10 leis an dá thaobh den chothromóid.
x=6
Roinn an dá thaobh faoi 3.
x=6,y=-2
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}