Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

5x-2y=7,2x+7y=-5
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
5x-2y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
5x=2y+7
Cuir 2y leis an dá thaobh den chothromóid.
x=\frac{1}{5}\left(2y+7\right)
Roinn an dá thaobh faoi 5.
x=\frac{2}{5}y+\frac{7}{5}
Méadaigh \frac{1}{5} faoi 2y+7.
2\left(\frac{2}{5}y+\frac{7}{5}\right)+7y=-5
Cuir x in aonad \frac{2y+7}{5} sa chothromóid eile, 2x+7y=-5.
\frac{4}{5}y+\frac{14}{5}+7y=-5
Méadaigh 2 faoi \frac{2y+7}{5}.
\frac{39}{5}y+\frac{14}{5}=-5
Suimigh \frac{4y}{5} le 7y?
\frac{39}{5}y=-\frac{39}{5}
Bain \frac{14}{5} ón dá thaobh den chothromóid.
y=-1
Roinn an dá thaobh den chothromóid faoi \frac{39}{5}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{2}{5}\left(-1\right)+\frac{7}{5}
Cuir y in aonad -1 in x=\frac{2}{5}y+\frac{7}{5}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-2+7}{5}
Méadaigh \frac{2}{5} faoi -1.
x=1
Suimigh \frac{7}{5} le -\frac{2}{5} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=-1
Tá an córas réitithe anois.
5x-2y=7,2x+7y=-5
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-5\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}5&-2\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}5&-2\\2&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\2&7\end{matrix}\right))\left(\begin{matrix}7\\-5\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-\left(-2\times 2\right)}&-\frac{-2}{5\times 7-\left(-2\times 2\right)}\\-\frac{2}{5\times 7-\left(-2\times 2\right)}&\frac{5}{5\times 7-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}&\frac{2}{39}\\-\frac{2}{39}&\frac{5}{39}\end{matrix}\right)\left(\begin{matrix}7\\-5\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{39}\times 7+\frac{2}{39}\left(-5\right)\\-\frac{2}{39}\times 7+\frac{5}{39}\left(-5\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Déan an uimhríocht.
x=1,y=-1
Asbhain na heilimintí maitríse x agus y.
5x-2y=7,2x+7y=-5
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2\times 5x+2\left(-2\right)y=2\times 7,5\times 2x+5\times 7y=5\left(-5\right)
Chun 5x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 5.
10x-4y=14,10x+35y=-25
Simpligh.
10x-10x-4y-35y=14+25
Dealaigh 10x+35y=-25 ó 10x-4y=14 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-4y-35y=14+25
Suimigh 10x le -10x? Cuirtear na téarmaí 10x agus -10x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-39y=14+25
Suimigh -4y le -35y?
-39y=39
Suimigh 14 le 25?
y=-1
Roinn an dá thaobh faoi -39.
2x+7\left(-1\right)=-5
Cuir y in aonad -1 in 2x+7y=-5. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x-7=-5
Méadaigh 7 faoi -1.
2x=2
Cuir 7 leis an dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 2.
x=1,y=-1
Tá an córas réitithe anois.