Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

4x-5y=7,2x+3y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
4x-5y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
4x=5y+7
Cuir 5y leis an dá thaobh den chothromóid.
x=\frac{1}{4}\left(5y+7\right)
Roinn an dá thaobh faoi 4.
x=\frac{5}{4}y+\frac{7}{4}
Méadaigh \frac{1}{4} faoi 5y+7.
2\left(\frac{5}{4}y+\frac{7}{4}\right)+3y=1
Cuir x in aonad \frac{5y+7}{4} sa chothromóid eile, 2x+3y=1.
\frac{5}{2}y+\frac{7}{2}+3y=1
Méadaigh 2 faoi \frac{5y+7}{4}.
\frac{11}{2}y+\frac{7}{2}=1
Suimigh \frac{5y}{2} le 3y?
\frac{11}{2}y=-\frac{5}{2}
Bain \frac{7}{2} ón dá thaobh den chothromóid.
y=-\frac{5}{11}
Roinn an dá thaobh den chothromóid faoi \frac{11}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{5}{4}\left(-\frac{5}{11}\right)+\frac{7}{4}
Cuir y in aonad -\frac{5}{11} in x=\frac{5}{4}y+\frac{7}{4}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{25}{44}+\frac{7}{4}
Méadaigh \frac{5}{4} faoi -\frac{5}{11} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{13}{11}
Suimigh \frac{7}{4} le -\frac{25}{44} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{13}{11},y=-\frac{5}{11}
Tá an córas réitithe anois.
4x-5y=7,2x+3y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}4&-5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}4&-5\\2&3\end{matrix}\right))\left(\begin{matrix}4&-5\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\2&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}4&-5\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\2&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\2&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-5\times 2\right)}&-\frac{-5}{4\times 3-\left(-5\times 2\right)}\\-\frac{2}{4\times 3-\left(-5\times 2\right)}&\frac{4}{4\times 3-\left(-5\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{5}{22}\\-\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 7+\frac{5}{22}\\-\frac{1}{11}\times 7+\frac{2}{11}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{11}\\-\frac{5}{11}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{13}{11},y=-\frac{5}{11}
Asbhain na heilimintí maitríse x agus y.
4x-5y=7,2x+3y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
2\times 4x+2\left(-5\right)y=2\times 7,4\times 2x+4\times 3y=4
Chun 4x agus 2x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 2 agus gach téarma ar gach taobh den dara cothromóid faoi 4.
8x-10y=14,8x+12y=4
Simpligh.
8x-8x-10y-12y=14-4
Dealaigh 8x+12y=4 ó 8x-10y=14 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-10y-12y=14-4
Suimigh 8x le -8x? Cuirtear na téarmaí 8x agus -8x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-22y=14-4
Suimigh -10y le -12y?
-22y=10
Suimigh 14 le -4?
y=-\frac{5}{11}
Roinn an dá thaobh faoi -22.
2x+3\left(-\frac{5}{11}\right)=1
Cuir y in aonad -\frac{5}{11} in 2x+3y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
2x-\frac{15}{11}=1
Méadaigh 3 faoi -\frac{5}{11}.
2x=\frac{26}{11}
Cuir \frac{15}{11} leis an dá thaobh den chothromóid.
x=\frac{13}{11}
Roinn an dá thaobh faoi 2.
x=\frac{13}{11},y=-\frac{5}{11}
Tá an córas réitithe anois.