Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

4x+2y=6,3x-y=-8
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
4x+2y=6
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
4x=-2y+6
Bain 2y ón dá thaobh den chothromóid.
x=\frac{1}{4}\left(-2y+6\right)
Roinn an dá thaobh faoi 4.
x=-\frac{1}{2}y+\frac{3}{2}
Méadaigh \frac{1}{4} faoi -2y+6.
3\left(-\frac{1}{2}y+\frac{3}{2}\right)-y=-8
Cuir x in aonad \frac{-y+3}{2} sa chothromóid eile, 3x-y=-8.
-\frac{3}{2}y+\frac{9}{2}-y=-8
Méadaigh 3 faoi \frac{-y+3}{2}.
-\frac{5}{2}y+\frac{9}{2}=-8
Suimigh -\frac{3y}{2} le -y?
-\frac{5}{2}y=-\frac{25}{2}
Bain \frac{9}{2} ón dá thaobh den chothromóid.
y=5
Roinn an dá thaobh den chothromóid faoi -\frac{5}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{1}{2}\times 5+\frac{3}{2}
Cuir y in aonad 5 in x=-\frac{1}{2}y+\frac{3}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-5+3}{2}
Méadaigh -\frac{1}{2} faoi 5.
x=-1
Suimigh \frac{3}{2} le -\frac{5}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=-1,y=5
Tá an córas réitithe anois.
4x+2y=6,3x-y=-8
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-8\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}4&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}4&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-8\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2\times 3}&-\frac{2}{4\left(-1\right)-2\times 3}\\-\frac{3}{4\left(-1\right)-2\times 3}&\frac{4}{4\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\-8\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 6+\frac{1}{5}\left(-8\right)\\\frac{3}{10}\times 6-\frac{2}{5}\left(-8\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
Déan an uimhríocht.
x=-1,y=5
Asbhain na heilimintí maitríse x agus y.
4x+2y=6,3x-y=-8
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 4x+3\times 2y=3\times 6,4\times 3x+4\left(-1\right)y=4\left(-8\right)
Chun 4x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 4.
12x+6y=18,12x-4y=-32
Simpligh.
12x-12x+6y+4y=18+32
Dealaigh 12x-4y=-32 ó 12x+6y=18 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
6y+4y=18+32
Suimigh 12x le -12x? Cuirtear na téarmaí 12x agus -12x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
10y=18+32
Suimigh 6y le 4y?
10y=50
Suimigh 18 le 32?
y=5
Roinn an dá thaobh faoi 10.
3x-5=-8
Cuir y in aonad 5 in 3x-y=-8. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x=-3
Cuir 5 leis an dá thaobh den chothromóid.
x=-1
Roinn an dá thaobh faoi 3.
x=-1,y=5
Tá an córas réitithe anois.