\left\{ \begin{array} { l } { 4 x + 2 y = 25,2 } \\ { 5 y + x = 32 } \end{array} \right.
Réitigh do x,y.
x = \frac{31}{9} = 3\frac{4}{9} \approx 3.444444444
y = \frac{257}{45} = 5\frac{32}{45} \approx 5.711111111
Graf
Tráth na gCeist
Simultaneous Equation
5 fadhbanna cosúil le:
\left\{ \begin{array} { l } { 4 x + 2 y = 25,2 } \\ { 5 y + x = 32 } \end{array} \right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
4x+2y=25.2,x+5y=32
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
4x+2y=25.2
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
4x=-2y+25.2
Bain 2y ón dá thaobh den chothromóid.
x=\frac{1}{4}\left(-2y+25.2\right)
Roinn an dá thaobh faoi 4.
x=-\frac{1}{2}y+\frac{63}{10}
Méadaigh \frac{1}{4} faoi -2y+25.2.
-\frac{1}{2}y+\frac{63}{10}+5y=32
Cuir x in aonad -\frac{y}{2}+\frac{63}{10} sa chothromóid eile, x+5y=32.
\frac{9}{2}y+\frac{63}{10}=32
Suimigh -\frac{y}{2} le 5y?
\frac{9}{2}y=\frac{257}{10}
Bain \frac{63}{10} ón dá thaobh den chothromóid.
y=\frac{257}{45}
Roinn an dá thaobh den chothromóid faoi \frac{9}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=-\frac{1}{2}\times \frac{257}{45}+\frac{63}{10}
Cuir y in aonad \frac{257}{45} in x=-\frac{1}{2}y+\frac{63}{10}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=-\frac{257}{90}+\frac{63}{10}
Méadaigh -\frac{1}{2} faoi \frac{257}{45} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{31}{9}
Suimigh \frac{63}{10} le -\frac{257}{90} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{31}{9},y=\frac{257}{45}
Tá an córas réitithe anois.
4x+2y=25.2,x+5y=32
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25.2\\32\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}4&2\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}4&2\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\1&5\end{matrix}\right))\left(\begin{matrix}25.2\\32\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-2}&-\frac{2}{4\times 5-2}\\-\frac{1}{4\times 5-2}&\frac{4}{4\times 5-2}\end{matrix}\right)\left(\begin{matrix}25.2\\32\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}&-\frac{1}{9}\\-\frac{1}{18}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}25.2\\32\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{18}\times 25.2-\frac{1}{9}\times 32\\-\frac{1}{18}\times 25.2+\frac{2}{9}\times 32\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31}{9}\\\frac{257}{45}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{31}{9},y=\frac{257}{45}
Asbhain na heilimintí maitríse x agus y.
4x+2y=25.2,x+5y=32
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
4x+2y=25.2,4x+4\times 5y=4\times 32
Chun 4x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 4.
4x+2y=25.2,4x+20y=128
Simpligh.
4x-4x+2y-20y=25.2-128
Dealaigh 4x+20y=128 ó 4x+2y=25.2 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
2y-20y=25.2-128
Suimigh 4x le -4x? Cuirtear na téarmaí 4x agus -4x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-18y=25.2-128
Suimigh 2y le -20y?
-18y=-102.8
Suimigh 25.2 le -128?
y=\frac{257}{45}
Roinn an dá thaobh faoi -18.
x+5\times \frac{257}{45}=32
Cuir y in aonad \frac{257}{45} in x+5y=32. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x+\frac{257}{9}=32
Méadaigh 5 faoi \frac{257}{45}.
x=\frac{31}{9}
Bain \frac{257}{9} ón dá thaobh den chothromóid.
x=\frac{31}{9},y=\frac{257}{45}
Tá an córas réitithe anois.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}