Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x-y=4,x-y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x-y=4
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=y+4
Cuir y leis an dá thaobh den chothromóid.
x=\frac{1}{3}\left(y+4\right)
Roinn an dá thaobh faoi 3.
x=\frac{1}{3}y+\frac{4}{3}
Méadaigh \frac{1}{3} faoi y+4.
\frac{1}{3}y+\frac{4}{3}-y=1
Cuir x in aonad \frac{4+y}{3} sa chothromóid eile, x-y=1.
-\frac{2}{3}y+\frac{4}{3}=1
Suimigh \frac{y}{3} le -y?
-\frac{2}{3}y=-\frac{1}{3}
Bain \frac{4}{3} ón dá thaobh den chothromóid.
y=\frac{1}{2}
Roinn an dá thaobh den chothromóid faoi -\frac{2}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{1}{3}\times \frac{1}{2}+\frac{4}{3}
Cuir y in aonad \frac{1}{2} in x=\frac{1}{3}y+\frac{4}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{1}{6}+\frac{4}{3}
Méadaigh \frac{1}{3} faoi \frac{1}{2} tríd an uimhreoir a mhéadú faoin uimhreoir agus an t-ainmneoir a mhéadú faoin ainmneoir. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{3}{2}
Suimigh \frac{4}{3} le \frac{1}{6} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=\frac{3}{2},y=\frac{1}{2}
Tá an córas réitithe anois.
3x-y=4,x-y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4-\frac{1}{2}\\\frac{1}{2}\times 4-\frac{3}{2}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
Déan an uimhríocht.
x=\frac{3}{2},y=\frac{1}{2}
Asbhain na heilimintí maitríse x agus y.
3x-y=4,x-y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x-x-y+y=4-1
Dealaigh x-y=1 ó 3x-y=4 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
3x-x=4-1
Suimigh -y le y? Cuirtear na téarmaí -y agus y ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
2x=4-1
Suimigh 3x le -x?
2x=3
Suimigh 4 le -1?
x=\frac{3}{2}
Roinn an dá thaobh faoi 2.
\frac{3}{2}-y=1
Cuir x in aonad \frac{3}{2} in x-y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do y.
-y=-\frac{1}{2}
Bain \frac{3}{2} ón dá thaobh den chothromóid.
x=\frac{3}{2},y=\frac{1}{2}
Tá an córas réitithe anois.