Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x-y=-1,-x+2y=7
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x-y=-1
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=y-1
Cuir y leis an dá thaobh den chothromóid.
x=\frac{1}{3}\left(y-1\right)
Roinn an dá thaobh faoi 3.
x=\frac{1}{3}y-\frac{1}{3}
Méadaigh \frac{1}{3} faoi y-1.
-\left(\frac{1}{3}y-\frac{1}{3}\right)+2y=7
Cuir x in aonad \frac{-1+y}{3} sa chothromóid eile, -x+2y=7.
-\frac{1}{3}y+\frac{1}{3}+2y=7
Méadaigh -1 faoi \frac{-1+y}{3}.
\frac{5}{3}y+\frac{1}{3}=7
Suimigh -\frac{y}{3} le 2y?
\frac{5}{3}y=\frac{20}{3}
Bain \frac{1}{3} ón dá thaobh den chothromóid.
y=4
Roinn an dá thaobh den chothromóid faoi \frac{5}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{1}{3}\times 4-\frac{1}{3}
Cuir y in aonad 4 in x=\frac{1}{3}y-\frac{1}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{4-1}{3}
Méadaigh \frac{1}{3} faoi 4.
x=1
Suimigh -\frac{1}{3} le \frac{4}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=4
Tá an córas réitithe anois.
3x-y=-1,-x+2y=7
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&-1\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\-1&2\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-\left(-1\right)\right)}&-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-1\right)+\frac{1}{5}\times 7\\\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 7\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Déan an uimhríocht.
x=1,y=4
Asbhain na heilimintí maitríse x agus y.
3x-y=-1,-x+2y=7
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
-3x-\left(-y\right)=-\left(-1\right),3\left(-1\right)x+3\times 2y=3\times 7
Chun 3x agus -x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi -1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
-3x+y=1,-3x+6y=21
Simpligh.
-3x+3x+y-6y=1-21
Dealaigh -3x+6y=21 ó -3x+y=1 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
y-6y=1-21
Suimigh -3x le 3x? Cuirtear na téarmaí -3x agus 3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-5y=1-21
Suimigh y le -6y?
-5y=-20
Suimigh 1 le -21?
y=4
Roinn an dá thaobh faoi -5.
-x+2\times 4=7
Cuir y in aonad 4 in -x+2y=7. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
-x+8=7
Méadaigh 2 faoi 4.
-x=-1
Bain 8 ón dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi -1.
x=1,y=4
Tá an córas réitithe anois.