Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

3x-2y=13,x+2y=-1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
3x-2y=13
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
3x=2y+13
Cuir 2y leis an dá thaobh den chothromóid.
x=\frac{1}{3}\left(2y+13\right)
Roinn an dá thaobh faoi 3.
x=\frac{2}{3}y+\frac{13}{3}
Méadaigh \frac{1}{3} faoi 2y+13.
\frac{2}{3}y+\frac{13}{3}+2y=-1
Cuir x in aonad \frac{2y+13}{3} sa chothromóid eile, x+2y=-1.
\frac{8}{3}y+\frac{13}{3}=-1
Suimigh \frac{2y}{3} le 2y?
\frac{8}{3}y=-\frac{16}{3}
Bain \frac{13}{3} ón dá thaobh den chothromóid.
y=-2
Roinn an dá thaobh den chothromóid faoi \frac{8}{3}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{2}{3}\left(-2\right)+\frac{13}{3}
Cuir y in aonad -2 in x=\frac{2}{3}y+\frac{13}{3}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-4+13}{3}
Méadaigh \frac{2}{3} faoi -2.
x=3
Suimigh \frac{13}{3} le -\frac{4}{3} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=3,y=-2
Tá an córas réitithe anois.
3x-2y=13,x+2y=-1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}3&-2\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&2\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\right)}&-\frac{-2}{3\times 2-\left(-2\right)}\\-\frac{1}{3\times 2-\left(-2\right)}&\frac{3}{3\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{8}&\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 13+\frac{1}{4}\left(-1\right)\\-\frac{1}{8}\times 13+\frac{3}{8}\left(-1\right)\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
Déan an uimhríocht.
x=3,y=-2
Asbhain na heilimintí maitríse x agus y.
3x-2y=13,x+2y=-1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3x-2y=13,3x+3\times 2y=3\left(-1\right)
Chun 3x agus x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 1 agus gach téarma ar gach taobh den dara cothromóid faoi 3.
3x-2y=13,3x+6y=-3
Simpligh.
3x-3x-2y-6y=13+3
Dealaigh 3x+6y=-3 ó 3x-2y=13 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-2y-6y=13+3
Suimigh 3x le -3x? Cuirtear na téarmaí 3x agus -3x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-8y=13+3
Suimigh -2y le -6y?
-8y=16
Suimigh 13 le 3?
y=-2
Roinn an dá thaobh faoi -8.
x+2\left(-2\right)=-1
Cuir y in aonad -2 in x+2y=-1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x-4=-1
Méadaigh 2 faoi -2.
x=3
Cuir 4 leis an dá thaobh den chothromóid.
x=3,y=-2
Tá an córas réitithe anois.