Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x-5y=7,4x+3y=1
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x-5y=7
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=5y+7
Cuir 5y leis an dá thaobh den chothromóid.
x=\frac{1}{2}\left(5y+7\right)
Roinn an dá thaobh faoi 2.
x=\frac{5}{2}y+\frac{7}{2}
Méadaigh \frac{1}{2} faoi 5y+7.
4\left(\frac{5}{2}y+\frac{7}{2}\right)+3y=1
Cuir x in aonad \frac{5y+7}{2} sa chothromóid eile, 4x+3y=1.
10y+14+3y=1
Méadaigh 4 faoi \frac{5y+7}{2}.
13y+14=1
Suimigh 10y le 3y?
13y=-13
Bain 14 ón dá thaobh den chothromóid.
y=-1
Roinn an dá thaobh faoi 13.
x=\frac{5}{2}\left(-1\right)+\frac{7}{2}
Cuir y in aonad -1 in x=\frac{5}{2}y+\frac{7}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=\frac{-5+7}{2}
Méadaigh \frac{5}{2} faoi -1.
x=1
Suimigh \frac{7}{2} le -\frac{5}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=1,y=-1
Tá an córas réitithe anois.
2x-5y=7,4x+3y=1
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}2&-5\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&-5\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&3\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-5\times 4\right)}&-\frac{-5}{2\times 3-\left(-5\times 4\right)}\\-\frac{4}{2\times 3-\left(-5\times 4\right)}&\frac{2}{2\times 3-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}&\frac{5}{26}\\-\frac{2}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{26}\times 7+\frac{5}{26}\\-\frac{2}{13}\times 7+\frac{1}{13}\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
Déan an uimhríocht.
x=1,y=-1
Asbhain na heilimintí maitríse x agus y.
2x-5y=7,4x+3y=1
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
4\times 2x+4\left(-5\right)y=4\times 7,2\times 4x+2\times 3y=2
Chun 2x agus 4x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 4 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
8x-20y=28,8x+6y=2
Simpligh.
8x-8x-20y-6y=28-2
Dealaigh 8x+6y=2 ó 8x-20y=28 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-20y-6y=28-2
Suimigh 8x le -8x? Cuirtear na téarmaí 8x agus -8x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-26y=28-2
Suimigh -20y le -6y?
-26y=26
Suimigh 28 le -2?
y=-1
Roinn an dá thaobh faoi -26.
4x+3\left(-1\right)=1
Cuir y in aonad -1 in 4x+3y=1. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
4x-3=1
Méadaigh 3 faoi -1.
4x=4
Cuir 3 leis an dá thaobh den chothromóid.
x=1
Roinn an dá thaobh faoi 4.
x=1,y=-1
Tá an córas réitithe anois.