Scipeáil chuig an bpríomhábhar
Réitigh do x,y.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x-3y=3,3x+2y=11
Chun péire cothromóidí a réiteach ag baint úsáid as ionadú, réitigh ceann de na cothromóidí ar dtús le ceann de na hathróga a fháil. Ansin ionadaigh an toradh don athróg sin sa chothromóid eile.
2x-3y=3
Roghnaigh ceann de na cothromóidí agus réitigh é do x trí x ar an taobh clé den chomhartha ‘Cothrom le’ a aonrú.
2x=3y+3
Cuir 3y leis an dá thaobh den chothromóid.
x=\frac{1}{2}\left(3y+3\right)
Roinn an dá thaobh faoi 2.
x=\frac{3}{2}y+\frac{3}{2}
Méadaigh \frac{1}{2} faoi 3+3y.
3\left(\frac{3}{2}y+\frac{3}{2}\right)+2y=11
Cuir x in aonad \frac{3+3y}{2} sa chothromóid eile, 3x+2y=11.
\frac{9}{2}y+\frac{9}{2}+2y=11
Méadaigh 3 faoi \frac{3+3y}{2}.
\frac{13}{2}y+\frac{9}{2}=11
Suimigh \frac{9y}{2} le 2y?
\frac{13}{2}y=\frac{13}{2}
Bain \frac{9}{2} ón dá thaobh den chothromóid.
y=1
Roinn an dá thaobh den chothromóid faoi \frac{13}{2}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x=\frac{3+3}{2}
Cuir y in aonad 1 in x=\frac{3}{2}y+\frac{3}{2}. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
x=3
Suimigh \frac{3}{2} le \frac{3}{2} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
x=3,y=1
Tá an córas réitithe anois.
2x-3y=3,3x+2y=11
Cuir na cothromóidí i bhfoirm chaighdeánach agus ansin úsáid maitrísí chun córas na gcothromóidí a réiteach.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\11\end{matrix}\right)
Scríobh na cothromóidí i bhfoirm mhaitríse.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Iolraigh faoi chlé an chothromóid faoi mhaitrís inbhéartach \left(\begin{matrix}2&-3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Is ionann an mhaitrís chéannachta agus toradh na maitríse agus a hinbhéarta.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}3\\11\end{matrix}\right)
Iolraigh na maitrísí ar thaobh na láimhe clé den chomhartha ‘Cothrom le’.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
Don mhaitrís 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), is é an mhaitrís inbhéarta \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), mar sin is féidir cothromóid na maitríse a athscríobh mar fhadhb iolraithe maitríse.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}3\\11\end{matrix}\right)
Déan an uimhríocht.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{3}{13}\times 11\\-\frac{3}{13}\times 3+\frac{2}{13}\times 11\end{matrix}\right)
Méadaigh na maitrísí.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Déan an uimhríocht.
x=3,y=1
Asbhain na heilimintí maitríse x agus y.
2x-3y=3,3x+2y=11
Chun réiteach a fháil trí dhíbirt, ní mór do chomhéifeachtaí ceann de na hathróga a bheith mar an gcéanna sa dá chothromóid ionas go gcealófar an athróg nuair a bhaintear cothromóid amháin ón gceann eile.
3\times 2x+3\left(-3\right)y=3\times 3,2\times 3x+2\times 2y=2\times 11
Chun 2x agus 3x a dhéanamh cothrom, méadaigh gach téarma ar gach taobh den chéad chothromóid faoi 3 agus gach téarma ar gach taobh den dara cothromóid faoi 2.
6x-9y=9,6x+4y=22
Simpligh.
6x-6x-9y-4y=9-22
Dealaigh 6x+4y=22 ó 6x-9y=9 trí théarmaí cosúla ar gach taobh den comhartha cothrom le a dhealú.
-9y-4y=9-22
Suimigh 6x le -6x? Cuirtear na téarmaí 6x agus -6x ar ceal, agus níl fágtha ach cothromóid nach bhfuil inti ach athróg amháin is féidir a réiteach.
-13y=9-22
Suimigh -9y le -4y?
-13y=-13
Suimigh 9 le -22?
y=1
Roinn an dá thaobh faoi -13.
3x+2=11
Cuir y in aonad 1 in 3x+2y=11. Toisc nach bhfuil ach athróg amháin sa chothromóid a bheidh mar thoradh air, is féidir leat réiteach díreach a fháil do x.
3x=9
Bain 2 ón dá thaobh den chothromóid.
x=3
Roinn an dá thaobh faoi 3.
x=3,y=1
Tá an córas réitithe anois.