Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} chun \left(x^{2}+1\right)^{3} a leathnú.
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 3 chun 6 a bhaint amach.
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
Úsáid an t-airí dáileach chun 2x a mhéadú faoi x^{6}+3x^{4}+3x^{2}+1.
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
Measc an tsuim téarma fá téarma.
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{7}\mathrm{d}x le \frac{x^{8}}{8}. Méadaigh 2 faoi \frac{x^{8}}{8}.
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{5}\mathrm{d}x le \frac{x^{6}}{6}. Méadaigh 6 faoi \frac{x^{6}}{6}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{3}\mathrm{d}x le \frac{x^{4}}{4}. Méadaigh 6 faoi \frac{x^{4}}{4}.
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x\mathrm{d}x le \frac{x^{2}}{2}. Méadaigh 2 faoi \frac{x^{2}}{2}.
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.