Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int 5-x+2x^{2}-3x^{3}\mathrm{d}x
Déan luacháil ar an suimeálaí éiginnte ar dtús.
\int 5\mathrm{d}x+\int -x\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int -3x^{3}\mathrm{d}x
Measc an tsuim téarma fá téarma.
\int 5\mathrm{d}x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
5x-\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Aimsigh suimeálaithe do 5 ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
5x-\frac{x^{2}}{2}+2\int x^{2}\mathrm{d}x-3\int x^{3}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x\mathrm{d}x le \frac{x^{2}}{2}. Méadaigh -1 faoi \frac{x^{2}}{2}.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-3\int x^{3}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh 2 faoi \frac{x^{3}}{3}.
5x-\frac{x^{2}}{2}+\frac{2x^{3}}{3}-\frac{3x^{4}}{4}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{3}\mathrm{d}x le \frac{x^{4}}{4}. Méadaigh -3 faoi \frac{x^{4}}{4}.
5\times 4-\frac{4^{2}}{2}+\frac{2}{3}\times 4^{3}-\frac{3}{4}\times 4^{4}-\left(5\times 1-\frac{1^{2}}{2}+\frac{2}{3}\times 1^{3}-\frac{3}{4}\times 1^{4}\right)
Is ionann suimeálaí cinnte agus frithdhíorthach an nath luacháilte ag teorainn uachtair na suimeála lúide an frithdhíorthach luacháilte ag teorainn íochtair na suimeála.
-\frac{567}{4}
Simpligh.