Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(4x-x^{3}\right)^{2} a leathnú.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
Chun cumhachtaí den bhonn céanna a iolrú, suimigh a n-easpónaint. Suimigh 1 agus 3 chun 4 a bhaint amach.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 3 agus 2 chun 6 a bhaint amach.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Déan luacháil ar an suimeálaí éiginnte ar dtús.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Measc an tsuim téarma fá téarma.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh 16 faoi \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{4}\mathrm{d}x le \frac{x^{5}}{5}. Méadaigh -8 faoi \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{6}\mathrm{d}x le \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Simpligh.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
Is ionann suimeálaí cinnte agus frithdhíorthach an nath luacháilte ag teorainn uachtair na suimeála lúide an frithdhíorthach luacháilte ag teorainn íochtair na suimeála.
\frac{1024}{105}
Simpligh.