Luacháil
\frac{1}{4}=0.25
Tráth na gCeist
Integration
5 fadhbanna cosúil le:
\int _ { 0 } ^ { 1 } \frac { 1 } { 3 } - \frac { 1 } { 3 } y ^ { 3 } d y
Roinn
Cóipeáladh go dtí an ghearrthaisce
\int \frac{1-y^{3}}{3}\mathrm{d}y
Déan luacháil ar an suimeálaí éiginnte ar dtús.
\int \frac{1}{3}\mathrm{d}y+\int -\frac{y^{3}}{3}\mathrm{d}y
Measc an tsuim téarma fá téarma.
\int \frac{1}{3}\mathrm{d}y-\frac{\int y^{3}\mathrm{d}y}{3}
Fág an leanúnach sna téarmaí as an áireamh.
\frac{y-\int y^{3}\mathrm{d}y}{3}
Aimsigh suimeálaithe do \frac{1}{3} ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}y=ay.
\frac{y}{3}-\frac{y^{4}}{12}
Ó \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int y^{3}\mathrm{d}y le \frac{y^{4}}{4}. Méadaigh -\frac{1}{3} faoi \frac{y^{4}}{4}.
\frac{1}{3}\times 1-\frac{1^{4}}{12}-\left(\frac{1}{3}\times 0-\frac{0^{4}}{12}\right)
Is ionann suimeálaí cinnte agus frithdhíorthach an nath luacháilte ag teorainn uachtair na suimeála lúide an frithdhíorthach luacháilte ag teorainn íochtair na suimeála.
\frac{1}{4}
Simpligh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}