Luacháil
\frac{\sqrt{2}}{60}+\frac{1}{30}\approx 0.056903559
Tráth na gCeist
Integration
5 fadhbanna cosúil le:
\int _ { \frac { \sqrt { 2 } } { 2 } } ^ { 1 } ( x ^ { 4 } - \frac { 1 } { 2 } x ^ { 2 } ) d x
Roinn
Cóipeáladh go dtí an ghearrthaisce
\int x^{4}-\frac{x^{2}}{2}\mathrm{d}x
Déan luacháil ar an suimeálaí éiginnte ar dtús.
\int x^{4}\mathrm{d}x+\int -\frac{x^{2}}{2}\mathrm{d}x
Measc an tsuim téarma fá téarma.
\int x^{4}\mathrm{d}x-\frac{\int x^{2}\mathrm{d}x}{2}
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{5}}{5}-\frac{\int x^{2}\mathrm{d}x}{2}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{4}\mathrm{d}x le \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{3}}{6}
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh -\frac{1}{2} faoi \frac{x^{3}}{3}.
\frac{1^{5}}{5}-\frac{1^{3}}{6}-\left(\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}\right)
Is ionann suimeálaí cinnte agus frithdhíorthach an nath luacháilte ag teorainn uachtair na suimeála lúide an frithdhíorthach luacháilte ag teorainn íochtair na suimeála.
\frac{1}{30}+\frac{\sqrt{2}}{60}
Simpligh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}