Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} chun \left(x^{2}+2\right)^{3} a leathnú.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 3 chun 6 a bhaint amach.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Chun cumhacht a ardú go cumhacht eile, méadaigh na heaspónaint. Iolraigh 2 agus 2 chun 4 a bhaint amach.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Measc an tsuim téarma fá téarma.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{6}\mathrm{d}x le \frac{x^{7}}{7}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{4}\mathrm{d}x le \frac{x^{5}}{5}. Méadaigh 6 faoi \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh 12 faoi \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Aimsigh suimeálaithe do 8 ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Simpligh.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.