Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\int 16x^{2}-56x+49\mathrm{d}x
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(4x-7\right)^{2} a leathnú.
\int 16x^{2}\mathrm{d}x+\int -56x\mathrm{d}x+\int 49\mathrm{d}x
Measc an tsuim téarma fá téarma.
16\int x^{2}\mathrm{d}x-56\int x\mathrm{d}x+\int 49\mathrm{d}x
Fág an leanúnach sna téarmaí as an áireamh.
\frac{16x^{3}}{3}-56\int x\mathrm{d}x+\int 49\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x^{2}\mathrm{d}x le \frac{x^{3}}{3}. Méadaigh 16 faoi \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-28x^{2}+\int 49\mathrm{d}x
Ó \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} fá choinne k\neq -1, athchuir \int x\mathrm{d}x le \frac{x^{2}}{2}. Méadaigh -56 faoi \frac{x^{2}}{2}.
\frac{16x^{3}}{3}-28x^{2}+49x
Aimsigh suimeálaithe do 49 ag baint úsáid as an tábla do suimeálaithe coitianta riail\int a\mathrm{d}x=ax.
\frac{16x^{3}}{3}-28x^{2}+49x+С
Má tá F\left(x\right) mar frithdhíorthach do f\left(x\right), beidh tacar do frithdhíorthach uile do f\left(x\right) a thabhairt ag F\left(x\right)+C. Mar sin de, cur an comhtháthú leanúnach C\in \mathrm{R} don toradh.